Menu Close

find-the-value-of-pi-6-pi-4-x-1-cos-2-x-dxr-




Question Number 41052 by turbo msup by abdo last updated on 01/Aug/18
find the value of  ∫_(π/6) ^(π/4)   (x/(1+cos^2 x))dxr
findthevalueofπ6π4x1+cos2xdxr
Commented by maxmathsup by imad last updated on 02/Aug/18
let  A = ∫_(π/6) ^(π/4)     (x/(1+cos^2 x)) dx we have A =∫_(π/6) ^(π/4)   (x/(1+(1/(1+tan^2 x))))dx  = ∫_(π/6) ^(π/4)    ((x(1+tan^2 x))/(2+tan^2 x)) dx  changement  tanx =t give  A = ∫_(1/( (√3))) ^1     ((arctant(1+t^2 ))/(2+t^2 )) (dt/(1+t^2 )) = ∫_(1/( (√3))) ^1    ((arctant)/(2+t^2 )) dt  let introduce the   parametric function  ϕ(x)= ∫_(1/( (√3))) ^1   ((arctan(xt))/(2+t^2 )) dt  we have  ϕ^′ (x)= ∫_(1/( (√3))) ^1     (t/((1+x^2 t^2 )(2+t^2 )))dt =_(xt =u)       ∫_(x/( (√3))) ^x      (u/(x(1+u^2 )(2+(u^2 /x^2 )))) (du/x)  = ∫_(x/( (√3))) ^x     (u/((1+u^2 )(2x^2  +u^2 ))) du  let decompose F(u) = (u/((u^2 +1)(u^2  +2x^2 )))  F(u) = ((au+b)/(u^2  +1)) +((cu +d)/(u^2  +2x^2 ))  F(−u) =−F(u) ⇒((−au+b)/(u^2  +1)) +((−cu +d)/(u^2  +2x^2 )) =((−au−b)/(u^2  +1)) +((−cu−d)/(u^2  +2x^2 )) ⇒  b=d=0 ⇒F(u) =((au)/(u^2  +1)) +((cu)/(u^2  +2x^2 ))  lim_(u→+∞) uF(u) =0=a+c ⇒c=−a ⇒F(u)=((au)/(u^2  +1)) −((au)/(u^2  +2x^2 ))  F(1) = (1/(2(1+2x^2 ))) =(a/2) −(a/(1+2x^2 )) ⇒(1/2) =((1+2x^2 )/2)a −a⇒  1=(1+2x^2 )a−2a =(2x^2 −1)a ⇒a=(1/(2x^2 −1)) ⇒  F(u) =(1/(2x^2 −1)){ (u/(u^2 +1)) −(u/(u^2  +2x^2 ))}⇒ϕ^′ (x)=(1/(2x^2 −1)) ∫_(x/( (√3))) ^x  ((u/(u^2  +1)) −(u/(u^2  +2x^2 )))du  = (1/(2(2x^2 −1)))[ ln∣((u^2 +1)/(u^2  +2x^2 ))∣]_(x/( (√3))) ^x  = (1/(2(2x^2 −1))){ln(((x^2 +1)/(3x^2 )))−ln((((x^2 /3)+1)/((x^2 /3) +2x^2 )))}  = (1/(2(2x^2 −1))){  ln(((x^2  +1)/(3x^2 ))) −ln(((x^2  +3)/(7x^2 )))}  =(1/(2(2x^2 −1))){  ln(x^2 +1)−ln(3)−2ln∣x∣ −ln(x^2  +3) +ln(7) +2ln∣x∣}  =((ln(7)−ln(3))/(2(2x^2 −1)))  +((ln(x^2 +1))/(2(2x^2 −1))) −((ln(x^2  +3))/(2(2x^2 −1))) ⇒  ϕ(x) = ∫  ((ln(7)−ln(3))/(2(2x^2 −1))) dx + ∫     ((ln(x^2  +1))/(2(2x^2 −1))) dx −∫  ((ln(x^2  +3))/(2(2x^2 −1))) dx +c  ...be continued ....
letA=π6π4x1+cos2xdxwehaveA=π6π4x1+11+tan2xdx=π6π4x(1+tan2x)2+tan2xdxchangementtanx=tgiveA=131arctant(1+t2)2+t2dt1+t2=131arctant2+t2dtletintroducetheparametricfunctionφ(x)=131arctan(xt)2+t2dtwehaveφ(x)=131t(1+x2t2)(2+t2)dt=xt=ux3xux(1+u2)(2+u2x2)dux=x3xu(1+u2)(2x2+u2)duletdecomposeF(u)=u(u2+1)(u2+2x2)F(u)=au+bu2+1+cu+du2+2x2F(u)=F(u)au+bu2+1+cu+du2+2x2=aubu2+1+cudu2+2x2b=d=0F(u)=auu2+1+cuu2+2x2limu+uF(u)=0=a+cc=aF(u)=auu2+1auu2+2x2F(1)=12(1+2x2)=a2a1+2x212=1+2x22aa1=(1+2x2)a2a=(2x21)aa=12x21F(u)=12x21{uu2+1uu2+2x2}φ(x)=12x21x3x(uu2+1uu2+2x2)du=12(2x21)[lnu2+1u2+2x2]x3x=12(2x21){ln(x2+13x2)ln(x23+1x23+2x2)}=12(2x21){ln(x2+13x2)ln(x2+37x2)}=12(2x21){ln(x2+1)ln(3)2lnxln(x2+3)+ln(7)+2lnx}=ln(7)ln(3)2(2x21)+ln(x2+1)2(2x21)ln(x2+3)2(2x21)φ(x)=ln(7)ln(3)2(2x21)dx+ln(x2+1)2(2x21)dxln(x2+3)2(2x21)dx+cbecontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *