find-the-value-of-pi-6-pi-4-x-1-cos-2-x-dxr- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 41052 by turbo msup by abdo last updated on 01/Aug/18 findthevalueof∫π6π4x1+cos2xdxr Commented by maxmathsup by imad last updated on 02/Aug/18 letA=∫π6π4x1+cos2xdxwehaveA=∫π6π4x1+11+tan2xdx=∫π6π4x(1+tan2x)2+tan2xdxchangementtanx=tgiveA=∫131arctant(1+t2)2+t2dt1+t2=∫131arctant2+t2dtletintroducetheparametricfunctionφ(x)=∫131arctan(xt)2+t2dtwehaveφ′(x)=∫131t(1+x2t2)(2+t2)dt=xt=u∫x3xux(1+u2)(2+u2x2)dux=∫x3xu(1+u2)(2x2+u2)duletdecomposeF(u)=u(u2+1)(u2+2x2)F(u)=au+bu2+1+cu+du2+2x2F(−u)=−F(u)⇒−au+bu2+1+−cu+du2+2x2=−au−bu2+1+−cu−du2+2x2⇒b=d=0⇒F(u)=auu2+1+cuu2+2x2limu→+∞uF(u)=0=a+c⇒c=−a⇒F(u)=auu2+1−auu2+2x2F(1)=12(1+2x2)=a2−a1+2x2⇒12=1+2x22a−a⇒1=(1+2x2)a−2a=(2x2−1)a⇒a=12x2−1⇒F(u)=12x2−1{uu2+1−uu2+2x2}⇒φ′(x)=12x2−1∫x3x(uu2+1−uu2+2x2)du=12(2x2−1)[ln∣u2+1u2+2x2∣]x3x=12(2x2−1){ln(x2+13x2)−ln(x23+1x23+2x2)}=12(2x2−1){ln(x2+13x2)−ln(x2+37x2)}=12(2x2−1){ln(x2+1)−ln(3)−2ln∣x∣−ln(x2+3)+ln(7)+2ln∣x∣}=ln(7)−ln(3)2(2x2−1)+ln(x2+1)2(2x2−1)−ln(x2+3)2(2x2−1)⇒φ(x)=∫ln(7)−ln(3)2(2x2−1)dx+∫ln(x2+1)2(2x2−1)dx−∫ln(x2+3)2(2x2−1)dx+c…becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-pi-4-pi-4-x-2-cos-2-x-dx-Next Next post: let-I-0-pi-2-cos-6-x-dx-and-J-0-pi-2-sin-6-xdx-1-cslculate-I-J-and-I-J-2-find-the-value-of-I-and-J- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.