Menu Close

Find-the-value-of-Q-if-0-Q-cosec-1-d-ln-3-2-2-2-




Question Number 167922 by peter frank last updated on 29/Mar/22
Find the value of  Q  if  ∫_0 ^Q (√(cosec θ−1)) dθ=ln (((3+2(√2))/2))
FindthevalueofQif0Qcosecθ1dθ=ln(3+222)
Commented by MJS_new last updated on 29/Mar/22
dx?
dx?
Commented by peter frank last updated on 29/Mar/22
dθ
dθ
Answered by MJS_new last updated on 29/Mar/22
∫(√(csc θ −1))dθ=       [t=(√(csc θ −1)) → dθ=−((2dt)/((t^2 +1)(√(t^2 +2))))]  =−2∫(t/((t^2 +1)(√(t^2 +2))))=       [u=((t+(√(t^2 +2)))/( (√2))) → dt=((√(t^2 +2))/u)]  =−2(√2)∫((u^2 −1)/(u^4 +1))du=  =∫((2u+(√2))/(u^2 +(√2)u+1))−((2u−(√2))/(u^2 −(√2)u+1)))du=  =ln ((u^2 +(√2)u+1)/(u^2 −(√2)u+1)) =  ...  =ln (1+2sin x +2(√((1+sin x)sin x))) +C  this equals 0 with x=0  ⇒  1+2sin Q +2(√((1+sin Q)sin Q))=((3+2(√2))/2)  ⇒ sin Q =((11−6(√2))/8)  ...
cscθ1dθ=[t=cscθ1dθ=2dt(t2+1)t2+2]=2t(t2+1)t2+2=[u=t+t2+22dt=t2+2u]=22u21u4+1du==2u+2u2+2u+12u2u22u+1)du==lnu2+2u+1u22u+1==ln(1+2sinx+2(1+sinx)sinx)+Cthisequals0withx=01+2sinQ+2(1+sinQ)sinQ=3+222sinQ=11628
Answered by peter frank last updated on 29/Mar/22
∫_0 ^Q (√(cosec θ−1))dθ=∫_0 ^Q (√((1−sin θ)/(sin θ))) dθ  ∫_0 ^Q (√((1−sin θ)/(sin θ))) dθ=ln (((3+2(√2))/2))    .......
0Qcosecθ1dθ=0Q1sinθsinθdθ0Q1sinθsinθdθ=ln(3+222).
Answered by peter frank last updated on 30/Mar/22
Answered by peter frank last updated on 30/Mar/22
Commented by peter frank last updated on 30/Mar/22
thank you Mjs for you idea
thankyouMjsforyouidea

Leave a Reply

Your email address will not be published. Required fields are marked *