find-the-value-of-S-n-k-0-k-n-1-k-C-n-k-2k-1- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 27380 by abdo imad last updated on 05/Jan/18 findthevalueofSn=∑k=0k=n(−1)kCnk2k+1. Commented by abdo imad last updated on 07/Jan/18 letintroducethepolynomialp(x)=∑k=0k=n(−1)kCnk2k+1x2k+1Sn=p(1)wehavep,(x)=∑k=0nCnk(−1)kx2k=∑k=0k=nCnk(−x2)k=(1−x2)np(x)=∫0x(1−t2)ndt+λandλ=p(0)=0Sn=∫01(1−t2)ndtandthech.t=sinxgiveSn=∫0π2(1−sin2x)ncosxdx=∫0π2cosx2n+1dxletputIn=∫0π2(cosx)ndx(wallisintegral)integrationbypartsgiveIn=n−1nIn−2⇒I2n+1=2n2n+1I2n−1∏k=1nI2k+1=∏k=1n2k2k+1∏k=1nI2k−1⇒I2n+1=2n(n!)3.5….(2n+1)I1butI1=1Sn=22n(n!)2(2n+1)!. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Demontrer-que-minN-0-Next Next post: resolve-inside-C-z-i-z-i-n-z-i-z-i-n-2cos-and0-lt-lt-pi-n-integer- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.