Menu Close

find-the-value-of-S-n-k-0-k-n-1-k-C-n-k-2k-1-




Question Number 27380 by abdo imad last updated on 05/Jan/18
find the value of S_n =  Σ_(k=0) ^(k=n)    (((−1)^k  C_n ^k )/(2k+1))  .
findthevalueofSn=k=0k=n(1)kCnk2k+1.
Commented by abdo imad last updated on 07/Jan/18
let introduce the polynomial p(x)= Σ_(k=0) ^(k=n)   (((−1)^k  C_n ^k )/(2k+1)) x^(2k+1)   S_n =p(1)  we have p^, (x)= Σ_(k=0) ^n  C_n ^k  (−1)^k x^(2k)   = Σ_(k=0) ^(k=n)  C_n ^k  (−x^2 )^k = (1−x^2 )^n    p(x)= ∫_0 ^x (1−t^2 )^n dt +λ  and λ=p(0)=0  S_n = ∫_0 ^1 (1−t^2 )^n dt  and the ch. t=sinx give  S_n = ∫_0 ^(π/2) (1−sin^2 x)^n cosxdx=∫_0 ^(π/2) cosx^(2n+1) dx   let put  I_n = ∫_0 ^(π/2) (cosx)^n dx  (wallis integral) integration by parts   give I_n = ((n−1)/n) I_(n−2)    ⇒  I_(2n+1) = ((2n)/(2n+1)) I_(2n−1)   Π_(k=1) ^n  I_(2k+1) = Π_(k=1) ^n  ((2k)/(2k+1)) Π_(k=1) ^n  I_(2k−1)   ⇒ I_(2n+1) = ((2^n  (n!))/(3.5....(2n+1))) I_1     but  I_1 = 1  S_n   = ((2^(2n)  (n!)^2 )/((2n+1)!)).
letintroducethepolynomialp(x)=k=0k=n(1)kCnk2k+1x2k+1Sn=p(1)wehavep,(x)=k=0nCnk(1)kx2k=k=0k=nCnk(x2)k=(1x2)np(x)=0x(1t2)ndt+λandλ=p(0)=0Sn=01(1t2)ndtandthech.t=sinxgiveSn=0π2(1sin2x)ncosxdx=0π2cosx2n+1dxletputIn=0π2(cosx)ndx(wallisintegral)integrationbypartsgiveIn=n1nIn2I2n+1=2n2n+1I2n1k=1nI2k+1=k=1n2k2k+1k=1nI2k1I2n+1=2n(n!)3.5.(2n+1)I1butI1=1Sn=22n(n!)2(2n+1)!.

Leave a Reply

Your email address will not be published. Required fields are marked *