Menu Close

Find-the-value-of-S-S-1-1-1-2-1-2-3-1-3-4-




Question Number 182875 by HeferH last updated on 15/Dec/22
   Find the value of S:   S = 1 + (1/(1×2)) + (1/(2×3)) + (1/(3×4)) ...
FindthevalueofS:S=1+11×2+12×3+13×4
Answered by TheSupreme last updated on 16/Dec/22
S=1+Σ(1/(i(i+1)))=1+Σ(A/i)+Σ(B/(i+1))  1+Σ((Ai+A+Bi)/(i(i+1)))  A+B=0  A=1  S=1+Σ(1/i)−Σ(1/(i+1))  S_n =1+(1/2)−(1/(n+1))  S=(3/2)
S=1+Σ1i(i+1)=1+ΣAi+ΣBi+11+ΣAi+A+Bii(i+1)A+B=0A=1S=1+Σ1iΣ1i+1Sn=1+121n+1S=32
Commented by Frix last updated on 16/Dec/22
S_n =1+Σ_(i=1) ^n  (1/i) −Σ_(i=1) ^n  (1/(i+1)) =1+1−(1/(n+1)) ⇒  S=2
Sn=1+ni=11ini=11i+1=1+11n+1S=2
Answered by manxsol last updated on 16/Dec/22
S=1+(1−(1/2))+((1/2)−(1/3))+((1/3)−(1/4))...     ...  ((1/(n−2))−(1/(n−1))) + ((1/(n−1))−(1/n))  S=1+1−(1/n)  n⇒∞⇒(1/n)=0  S=2
S=1+(112)+(1213)+(1314)(1n21n1)+(1n11n)S=1+11nn1n=0S=2

Leave a Reply

Your email address will not be published. Required fields are marked *