Menu Close

find-the-value-of-the-following-integral-0-ln-2-x-1-x-2-dx-




Question Number 192407 by mnjuly1970 last updated on 17/May/23
       find  the value of the following integral                   χ = ∫_0 ^( ∞) (( ln^( 2) (x ))/(1+ x^( 2) )) dx = ?                      −−−−−−−−−
findthevalueofthefollowingintegralχ=0ln2(x)1+x2dx=?
Answered by ARUNG_Brandon_MBU last updated on 17/May/23
χ=∫_0 ^∞ ((ln^2 x)/(1+x^2 ))dx=(1/8)∫_0 ^∞ ((t^(−(1/2)) ln^2 t)/(1+t))dt     =(∂^2 /∂α^2 )∣_(α=(1/2)) (1/8)∫_0 ^∞ (t^(α−1) /(1+t))dt=(∂^2 /∂α^2 )∣_(α=(1/2)) (1/8)β(α, 1−α)     =(∂^2 /∂α^2 )∣_(α=(1/2)) (1/8)∙(π/(sin(πα)))=(∂/∂α)∣_(α=(1/2)) −(1/8)∙((π^2 cos(πα))/(sin^2 (πα)))     =−(π^3 /8)∣_(α=(1/2)) (−(1/(sin(πα)))−((2cos^2 (πα))/(sin^3 (πα))))=(π^3 /8)
χ=0ln2x1+x2dx=180t12ln2t1+tdt=2α2α=12180tα11+tdt=2α2α=1218β(α,1α)=2α2α=1218πsin(πα)=αα=1218π2cos(πα)sin2(πα)=π38α=12(1sin(πα)2cos2(πα)sin3(πα))=π38
Commented by mnjuly1970 last updated on 17/May/23
  so nice solution Sir    thank you very much.
sonicesolutionSirthankyouverymuch.

Leave a Reply

Your email address will not be published. Required fields are marked *