Menu Close

find-the-value-of-the-following-series-n-1-cos-npi-4-n-2-




Question Number 191528 by mnjuly1970 last updated on 25/Apr/23
        find  the  value  of  the         following  series .            Ω= Σ_(n=1) ^∞ (( cos(((nπ)/4) ))/n^( 2) ) =?
findthevalueofthefollowingseries.Ω=n=1cos(nπ4)n2=?
Answered by witcher3 last updated on 25/Apr/23
Σ_(n≥1) ((cos(n(π/4)))/n^2 )=(1/2)Σ_(n≥1) (((e^((iπ)/4) )^n +(e^(−((iπ)/4)) )^n )/n^2 )  =(1/2){Σ_(n≥1) (((e^((iπ)/4) )^n )/n^2 )+Σ_(n≥1) (((e^(−((iπ)/4)) )^n )/n^2 )}  =(1/2)(Li_2 (e^(i(π/4)) )+Li_2 (e^(−((iπ)/4)) ))  Li_2 (z)+Li_2 ((1/z))=−ζ(2)−(1/2)ln^2 (−z)  Ω=(1/2)(Li_2 (e^(−((iπ)/4)) )+Li_2 ((1/e^(−((iπ)/4)) )))  =(1/2)(−(𝛑^2 /6)−(1/2)ln^2 (−e^(−((iπ)/4)) ))=(1/2)(−(π^2 /6)+((9π^2 )/(32)))  =((11π^2 )/(192))
n1cos(nπ4)n2=12n1(eiπ4)n+(eiπ4)nn2=12{n1(eiπ4)nn2+n1(eiπ4)nn2}=12(Li2(eiπ4)+Li2(eiπ4))Li2(z)+Li2(1z)=ζ(2)12ln2(z)Ω=12(Li2(eiπ4)+Li2(1eiπ4))=12(π2612ln2(eiπ4))=12(π26+9π232)=11π2192
Commented by mnjuly1970 last updated on 25/Apr/23
thanks alot ....sir
thanksalot.sir
Commented by witcher3 last updated on 25/Apr/23
withe Pleasur Sir
withePleasurSir

Leave a Reply

Your email address will not be published. Required fields are marked *