Menu Close

find-the-value-of-the-sum-n-1-1-2n-1-2-2n-1-2-




Question Number 36819 by maxmathsup by imad last updated on 06/Jun/18
find the value of the sum Σ_(n=1) ^∞    (1/((2n−1)^2 (2n+1)^2 ))
findthevalueofthesumn=11(2n1)2(2n+1)2
Commented by maxmathsup by imad last updated on 03/Aug/18
let S_n = Σ_(k=1) ^n     (1/((2k−1)^2 (2k+1)^2 ))  ⇒S=lim_(n→+∞)  S_n   let decompose  F(x)=(1/((2x−1)^2 (2x+1)^2 ))  F(x)= (a/(2x−1)) +(b/((2x−1)^2 )) +(c/(2x+1)) +(d/((2x+1)^2 ))  b =lim_(x→(1/2))    (2x−1)^2 F(x) = (1/4)  d=lim_(x→−(1/2))    (2x+1)^2 F(x)=(1/4)  ⇒F(x)=(a/(2x−1)) +(1/(4(2x−1)^2 )) +(c/((2x+1))) +(1/(4(2x+1)^2 ))  lim_(x→+∞)  xF(x)=0 =(a/2) +(c/2) ⇒c=−a ⇒  F(x)=(a/(2x−1)) −(a/(2x+1)) + (1/(4(2x−1)^2 )) +(1/(4(2x+1)^2 ))  F(0) =1 =−2a +(1/2) ⇒2a =−(1/2) ⇒a =−(1/4) ⇒  F(x)=(1/(4(2x+1))) −(1/(4(2x−1))) +(1/(4(2x−1)^2 )) +(1/(4(2x+1)^2 ))  S_n =Σ_(k=1) ^n  F(k) =(1/4){ Σ_(k=1) ^n  (1/(2k+1)) −Σ_(k=1) ^n  (1/(2k−1)) +Σ_(k=1) ^n  (1/((2k−1)^2 )) +Σ_(k=1) ^n  (1/((2k+1)^2 ))}but  Σ_(k=1) ^n ((1/(2k+1)) −(1/(2k−1))) =Σ_(k=1) ^n (u_n −u_(n−1) )     (u_n =(1/(2n+1)))  =u_n  −u_0 =(1/(2n+1)) −1   also   Σ_(k=1) ^n  (1/((2k−1)^2 )) =_(k=j+1)   Σ_(j=0) ^(n−1)   (1/((2j+1)^2 )) →Σ_(n=0) ^∞   (1/((2n+1)^2 ))  Σ_(k=1) ^n   (1/((2k+1)^2 )) =Σ_(k=0) ^n  (1/((2k+1)^2 )) −1 →Σ_(n=0) ^∞   (1/((2n+1)^2 )) −1  we have (π^2 /6) =Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=1) ^∞  (1/(4n^2 )) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(1/4) (π^2 /6) +Σ_(n=0) ^∞  (1/((2n+1)^2 ))  ⇒Σ_(n=0) ^∞   (1/((2n+1)^2 )) =(π^2 /6) −(π^2 /(24)) =((3π^2 )/(24)) =(π^2 /8) ⇒  lim_    S_n =(1/4){−1 +(π^2 /8) +(π^2 /8) −1} =(1/4){(π^2 /4) −2} =(π^2 /(16)) −(1/2)  S=(π^2 /(16)) −(1/2) .
letSn=k=1n1(2k1)2(2k+1)2S=limn+SnletdecomposeF(x)=1(2x1)2(2x+1)2F(x)=a2x1+b(2x1)2+c2x+1+d(2x+1)2b=limx12(2x1)2F(x)=14d=limx12(2x+1)2F(x)=14F(x)=a2x1+14(2x1)2+c(2x+1)+14(2x+1)2limx+xF(x)=0=a2+c2c=aF(x)=a2x1a2x+1+14(2x1)2+14(2x+1)2F(0)=1=2a+122a=12a=14F(x)=14(2x+1)14(2x1)+14(2x1)2+14(2x+1)2Sn=k=1nF(k)=14{k=1n12k+1k=1n12k1+k=1n1(2k1)2+k=1n1(2k+1)2}butk=1n(12k+112k1)=k=1n(unun1)(un=12n+1)=unu0=12n+11alsok=1n1(2k1)2=k=j+1j=0n11(2j+1)2n=01(2n+1)2k=1n1(2k+1)2=k=0n1(2k+1)21n=01(2n+1)21wehaveπ26=n=11n2=n=114n2+n=01(2n+1)2=14π26+n=01(2n+1)2n=01(2n+1)2=π26π224=3π224=π28limSn=14{1+π28+π281}=14{π242}=π21612S=π21612.

Leave a Reply

Your email address will not be published. Required fields are marked *