find-the-value-of-the-sum-n-1-1-2n-1-2-2n-1-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 36819 by maxmathsup by imad last updated on 06/Jun/18 findthevalueofthesum∑n=1∞1(2n−1)2(2n+1)2 Commented by maxmathsup by imad last updated on 03/Aug/18 letSn=∑k=1n1(2k−1)2(2k+1)2⇒S=limn→+∞SnletdecomposeF(x)=1(2x−1)2(2x+1)2F(x)=a2x−1+b(2x−1)2+c2x+1+d(2x+1)2b=limx→12(2x−1)2F(x)=14d=limx→−12(2x+1)2F(x)=14⇒F(x)=a2x−1+14(2x−1)2+c(2x+1)+14(2x+1)2limx→+∞xF(x)=0=a2+c2⇒c=−a⇒F(x)=a2x−1−a2x+1+14(2x−1)2+14(2x+1)2F(0)=1=−2a+12⇒2a=−12⇒a=−14⇒F(x)=14(2x+1)−14(2x−1)+14(2x−1)2+14(2x+1)2Sn=∑k=1nF(k)=14{∑k=1n12k+1−∑k=1n12k−1+∑k=1n1(2k−1)2+∑k=1n1(2k+1)2}but∑k=1n(12k+1−12k−1)=∑k=1n(un−un−1)(un=12n+1)=un−u0=12n+1−1also∑k=1n1(2k−1)2=k=j+1∑j=0n−11(2j+1)2→∑n=0∞1(2n+1)2∑k=1n1(2k+1)2=∑k=0n1(2k+1)2−1→∑n=0∞1(2n+1)2−1wehaveπ26=∑n=1∞1n2=∑n=1∞14n2+∑n=0∞1(2n+1)2=14π26+∑n=0∞1(2n+1)2⇒∑n=0∞1(2n+1)2=π26−π224=3π224=π28⇒limSn=14{−1+π28+π28−1}=14{π24−2}=π216−12S=π216−12. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-167885Next Next post: Question-167889 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.