Menu Close

find-the-value-of-v-if-v-denotes-maximum-value-of-x-2-y-2-where-x-5-2-y-12-2-14-hint-repersent-greatest-integer-function-of-




Question Number 169382 by infinityaction last updated on 29/Apr/22
   find the value of  [v] if v denotes maximum       value of x^2  + y^2  , where (x+5)^2  + (y−12)^2  = 14      (hint [•] repersent greatest integer function of “ •”)
findthevalueof[v]ifvdenotesmaximumvalueofx2+y2,where(x+5)2+(y12)2=14(hint[]repersentgreatestintegerfunctionof)
Commented by infinityaction last updated on 29/Apr/22
thank you sir and  got my mistake
thankyousirandgotmymistake
Commented by infinityaction last updated on 29/Apr/22
sir solution
sirsolution
Commented by mr W last updated on 29/Apr/22
v=x^2 +y^2 =r^2   r is the distance from the origin to   a point on the circle  (x+5)^2 +(y−12)^2 =14.  it′s clear that the maximum distance  is the distance from  (0,0) to (−5,12) plus the radius of  the circle, which is (√(14)). i.e.  r_(max) =(√((−5−0)^2 +(12−0)^2 ))+(√(14))=13+(√(14))  v=r_(max) ^2 =(13+(√(14)))^2 ≈280.3
v=x2+y2=r2risthedistancefromtheorigintoapointonthecircle(x+5)2+(y12)2=14.itsclearthatthemaximumdistanceisthedistancefrom(0,0)to(5,12)plustheradiusofthecircle,whichis14.i.e.rmax=(50)2+(120)2+14=13+14v=rmax2=(13+14)2280.3
Commented by greougoury555 last updated on 29/Apr/22
 ⇒v = (√(14)) +(√((−5)^2 +12^2 )) = 13+(√(14))  ⇒ [ v ] = 16
v=14+(5)2+122=13+14[v]=16
Commented by infinityaction last updated on 29/Apr/22
use circle equation  same solution sir   btw thanks
usecircleequationsamesolutionsirbtwthanks
Commented by infinityaction last updated on 29/Apr/22
but sir i am confused  because let x= −5 and y = (√(14)) +12  then x^2 + y^2  = 272.799  [x^2 +y^2 ]= [272.799] = 272
butsiriamconfusedbecauseletx=5andy=14+12thenx2+y2=272.799[x2+y2]=[272.799]=272
Commented by mr W last updated on 29/Apr/22
v=(13+(√(14)))^2 ≈280.3  [v]=280
v=(13+14)2280.3[v]=280
Answered by kapoorshah last updated on 29/Apr/22
let   x + 5 = (√(14)) cos α  y − 12 = (√(14)) sin α  x^2  + y^2  = ((√(14)) cos α − 5)^2  + ((√(14)) sin α + 12)^2                   = 14 − 10(√(14)) cos α + 24(√(14)) sin α + 169                  = 183 + 26(√(14)) cos (α − tan^(−1) (− ((12)/5)))  [v] = 183 + 26(√(14))         ≈ 280,283
letx+5=14cosαy12=14sinαx2+y2=(14cosα5)2+(14sinα+12)2=141014cosα+2414sinα+169=183+2614cos(αtan1(125))[v]=183+2614280,283
Commented by infinityaction last updated on 29/Apr/22
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *