Menu Close

find-the-value-of-W-ln-1-x-y-dxdy-with-W-x-y-R-2-x-y-1-and-x-0-and-y-0-




Question Number 28161 by abdo imad last updated on 21/Jan/18
find the value of ∫∫_W ln(1+x+y)dxdy with  W={(x,y)∈R^2 / x+y≤1 and x≥0 and y≥0}.
$${find}\:{the}\:{value}\:{of}\:\int\int_{{W}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy}\:{with} \\ $$$${W}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:{x}+{y}\leqslant\mathrm{1}\:{and}\:{x}\geqslant\mathrm{0}\:{and}\:{y}\geqslant\mathrm{0}\right\}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *