Question Number 33736 by prof Abdo imad last updated on 23/Apr/18

Commented by prof Abdo imad last updated on 23/Apr/18

Answered by MJS last updated on 28/Apr/18
![Ostrogradski′s Method: ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx Q_1 (x)=gcd(Q(x);Q′(x)) Q_2 (x)=((Q(x))/(Q_1 (x))) P(x)=x^2 Q(x)=(x^2 +x+1)^2 Q′(x)=2(2x+1)(x^2 +x+1) gcd(Q(x);Q′(x))=(x^2 +x+1)=Q_1 (x)=Q_2 (x) to get P_1 (x)=k_1 x+k_2 , P_2 (x)=k_3 x+k_4 ((P(x))/(Q(x)))=(((P_1 (x))/(Q_1 (x))))^′ +((P_2 (x))/(Q_2 (x))) (x^2 /((x^2 +x+1)^2 ))=((k_1 (x^2 +x+1)−(k_1 x+k_2 )(2x+1))/((x^2 +x+1)^2 ))+((k_3 x+k_4 )/(x^2 +x+1)) [multiplicate with (x^2 +x+1)^2 ] x^2 =k_3 x^3 +(−k_1 +k_3 +k_4 )x^2 +(−2k_2 +k_3 +k_4 )x+(k_1 −k_2 +k_4 ) k_3 =0 −k_1 +k_3 +k_4 =1 −2k_2 +k_3 +k_4 =0 k_1 −k_2 +k_4 =0 k_1 =−(1/3); k_2 =(1/3); k_3 =0; k_4 =(2/3) P_1 (x)=−((x−1)/3); P_2 (x)=(2/3) ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx= =−((x−1)/(3(x^2 +x+1)))+(2/3)∫(1/(x^2 +x+1))dx (1/(x^2 +x+1))=(1/((x+(1/2))^2 +(3/4)))=(4/((2x+1)^2 +3)) (8/3)∫(1/((2x+1)^2 +3))dx= u=((2x+1)/( (√3))) → dx=((√3)/2)du x=((u(√3)−1)/2) (8/3)∫((√3)/(2(3u^2 +3)))du=((4(√3))/9)∫(1/(u^2 +1))du= =((4(√3))/9)arctan u =((4(√3))/9)arctan (((√3)/3)(2x+1)) ∫(x^2 /((x^2 +x+1)^2 ))dx=((4(√3))/9)arctan (((√3)/3)(2x+1))−((x−1)/(3(x^2 +x+1)))+C ∫_(−∞) ^∞ (x^2 /((x^2 +x+1)^2 ))dx=((4(√3))/9)π](https://www.tinkutara.com/question/Q33751.png)
Commented by prof Abdo imad last updated on 23/Apr/18

Answered by sma3l2996 last updated on 23/Apr/18
![I=∫_(−∞) ^(+∞) (x^2 /((1+x+x^2 )^2 ))dx=∫_(−∞) ^(+∞) ((x^2 +x+1−(x+1))/((x^2 +x+1)^2 ))dx =∫_(−∞) ^(+∞) (1/(x^2 +x+1))dx−(1/2)∫_(−∞) ^(+∞) ((2x+2)/((x^2 +x+1)^2 ))dx =∫_(−∞) ^(+∞) (dx/((x+(1/2))^2 +(3/4)))−(1/2)∫_(−∞) ^(+∞) ((2x+1)/((x^2 +x+1)^2 ))dx−(1/2)∫_(−∞) ^(+∞) (dx/(((x+(1/2))^2 +(3/4))^2 )) =(4/3)∫_(−∞) ^(+∞) (dx/((((2x+1)/( (√3))))^2 +1))+(1/2)[(1/(x^2 +x+1))]_(−∞) ^(+∞) −(8/9)∫_(−∞) ^(+∞) (dx/(((((2x+1)/( (√3))))^2 +1)^2 )) let t=((2x+1)/( (√3)))⇒dx=((√3)/2)dt so I=((2(√3))/3)∫_(−∞) ^(+∞) (dt/(t^2 +1))−((4(√3))/9)∫_(−∞) ^(+∞) (dt/((t^2 +1)^2 )) let t=tanu⇒dt=(1+tan^2 u)du I=((2(√3))/3)[tan^(−1) (t)]_(−∞) ^(+∞) −((4(√3))/9)∫_(−π/2) ^(π/2) (du/(1+tan^2 u)) =((2(√3))/3)π−((4(√3))/9)∫_(−π/2) ^(π/2) cos^2 (u)du ∫_(−π/2) ^(π/2) cos^2 (u)du=(1/2)∫_(−π/2) ^(π/2) (cos(2u)+1)du=(1/2)[(1/2)sin(2x)+x]_(−π/2) ^(π/2) =(π/2) I=((2(√3))/3)π−((4(√3))/9)((π/2))=((4(√3))/3)π](https://www.tinkutara.com/question/Q33746.png)
Commented by MJS last updated on 23/Apr/18
