Menu Close

find-the-value-of-x-2-1-x-x-2-2-dx-




Question Number 33736 by prof Abdo imad last updated on 23/Apr/18
find the value of  ∫_(−∞) ^(+∞)      (x^2 /((1+x +x^2 )^2 ))dx
$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}\:+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Commented by prof Abdo imad last updated on 23/Apr/18
let  use residus theorem we have  I = ∫_(−∞) ^(+∞)     (x^2 /(( (x+(1/2))^2  +(3/4))^2 ))  ch. x +(1/2) =((√3)/2) t  give   I = ∫_(−∞) ^(+∞)      ((((((√3)t)/2) −(1/2))^2 )/(((3/4)t^2  +(3/4))^2 )) ((√3)/2)dt  =((16)/9) .((√3)/2)  ∫_(−∞) ^(+∞)         ((3t^2  −2(√3) t +1)/(4( t^2  +1)^2 ))dt  = ((2(√3))/9) ∫_(−∞) ^(+∞)    ((3t^2  −2(√3) t +1)/((t^2  +1)^2 )) dt  .let consider  the complex function ϕ(z) = ((3z^2  −2(√3) z+1)/((z^2  +1)^2 ))  the poles of ϕ are i and−i (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2i π Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)    (1/((2−1)!))((z−i)^2 ϕ(z))^′   =lim_(z→i) (  ((3z^2  −2(√3) z +1)/((z+i)^2 )))^′   =lim_(z→i)   (((6z−2(√3))(z+i)^2  −2(z+i)(3z^2  −2(√3)z +1))/((z+i)^4 ))  =lim_(z→i)  (((6z −2(√3))(z+i) −2(3z^2  −2(√3) z +1))/((z+i)^3 ))  = (((6i −2(√3))(2i) −2( 3i^2  −2(√3) i +1))/((2i)^3 ))  =((−12 −4(√3) i +6  4(√3)i −2)/(−8i)) = ((−8)/(−8i)) = (1/i)  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ((1/i))=2π ⇒  I= ((2(√3))/9) .(2π) =((4π(√3))/9)  ★ I =((4π(√3))/9) ★
$${let}\:\:{use}\:{residus}\:{theorem}\:{we}\:{have} \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{x}^{\mathrm{2}} }{\left(\:\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:\:{ch}.\:{x}\:+\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{t} \\ $$$${give}\:\:\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{\left(\frac{\sqrt{\mathrm{3}}{t}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\left(\frac{\mathrm{3}}{\mathrm{4}}{t}^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{dt} \\ $$$$=\frac{\mathrm{16}}{\mathrm{9}}\:.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\:\frac{\mathrm{3}{t}^{\mathrm{2}} \:−\mathrm{2}\sqrt{\mathrm{3}}\:{t}\:+\mathrm{1}}{\mathrm{4}\left(\:{t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{9}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{3}{t}^{\mathrm{2}} \:−\mathrm{2}\sqrt{\mathrm{3}}\:{t}\:+\mathrm{1}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{dt}\:\:.{let}\:{consider} \\ $$$${the}\:{complex}\:{function}\:\varphi\left({z}\right)\:=\:\frac{\mathrm{3}{z}^{\mathrm{2}} \:−\mathrm{2}\sqrt{\mathrm{3}}\:{z}+\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}−{i}\:\left({doubles}\right) \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\:\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left(\left({z}−{i}\right)^{\mathrm{2}} \varphi\left({z}\right)\right)^{'} \\ $$$$={lim}_{{z}\rightarrow{i}} \left(\:\:\frac{\mathrm{3}{z}^{\mathrm{2}} \:−\mathrm{2}\sqrt{\mathrm{3}}\:{z}\:+\mathrm{1}}{\left({z}+{i}\right)^{\mathrm{2}} }\right)^{'} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{\left(\mathrm{6}{z}−\mathrm{2}\sqrt{\mathrm{3}}\right)\left({z}+{i}\right)^{\mathrm{2}} \:−\mathrm{2}\left({z}+{i}\right)\left(\mathrm{3}{z}^{\mathrm{2}} \:−\mathrm{2}\sqrt{\mathrm{3}}{z}\:+\mathrm{1}\right)}{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \:\frac{\left(\mathrm{6}{z}\:−\mathrm{2}\sqrt{\mathrm{3}}\right)\left({z}+{i}\right)\:−\mathrm{2}\left(\mathrm{3}{z}^{\mathrm{2}} \:−\mathrm{2}\sqrt{\mathrm{3}}\:{z}\:+\mathrm{1}\right)}{\left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$=\:\frac{\left(\mathrm{6}{i}\:−\mathrm{2}\sqrt{\mathrm{3}}\right)\left(\mathrm{2}{i}\right)\:−\mathrm{2}\left(\:\mathrm{3}{i}^{\mathrm{2}} \:−\mathrm{2}\sqrt{\mathrm{3}}\:{i}\:+\mathrm{1}\right)}{\left(\mathrm{2}{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{−\mathrm{12}\:−\mathrm{4}\sqrt{\mathrm{3}}\:{i}\:+\mathrm{6}\:\:\mathrm{4}\sqrt{\mathrm{3}}{i}\:−\mathrm{2}}{−\mathrm{8}{i}}\:=\:\frac{−\mathrm{8}}{−\mathrm{8}{i}}\:=\:\frac{\mathrm{1}}{{i}}\:\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left(\frac{\mathrm{1}}{{i}}\right)=\mathrm{2}\pi\:\Rightarrow \\ $$$${I}=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{9}}\:.\left(\mathrm{2}\pi\right)\:=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}} \\ $$$$\bigstar\:{I}\:=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:\bigstar\: \\ $$$$ \\ $$$$ \\ $$
Answered by MJS last updated on 28/Apr/18
Ostrogradski′s Method:  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcd(Q(x);Q′(x))  Q_2 (x)=((Q(x))/(Q_1 (x)))    P(x)=x^2   Q(x)=(x^2 +x+1)^2   Q′(x)=2(2x+1)(x^2 +x+1)  gcd(Q(x);Q′(x))=(x^2 +x+1)=Q_1 (x)=Q_2 (x)    to get P_1 (x)=k_1 x+k_2 , P_2 (x)=k_3 x+k_4   ((P(x))/(Q(x)))=(((P_1 (x))/(Q_1 (x))))^′ +((P_2 (x))/(Q_2 (x)))  (x^2 /((x^2 +x+1)^2 ))=((k_1 (x^2 +x+1)−(k_1 x+k_2 )(2x+1))/((x^2 +x+1)^2 ))+((k_3 x+k_4 )/(x^2 +x+1))            [multiplicate with (x^2 +x+1)^2 ]  x^2 =k_3 x^3 +(−k_1 +k_3 +k_4 )x^2 +(−2k_2 +k_3 +k_4 )x+(k_1 −k_2 +k_4 )  k_3 =0  −k_1 +k_3 +k_4 =1  −2k_2 +k_3 +k_4 =0  k_1 −k_2 +k_4 =0  k_1 =−(1/3); k_2 =(1/3); k_3 =0; k_4 =(2/3)  P_1 (x)=−((x−1)/3); P_2 (x)=(2/3)    ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx=  =−((x−1)/(3(x^2 +x+1)))+(2/3)∫(1/(x^2 +x+1))dx    (1/(x^2 +x+1))=(1/((x+(1/2))^2 +(3/4)))=(4/((2x+1)^2 +3))    (8/3)∫(1/((2x+1)^2 +3))dx=            u=((2x+1)/( (√3))) → dx=((√3)/2)du            x=((u(√3)−1)/2)            (8/3)∫((√3)/(2(3u^2 +3)))du=((4(√3))/9)∫(1/(u^2 +1))du=            =((4(√3))/9)arctan u  =((4(√3))/9)arctan (((√3)/3)(2x+1))    ∫(x^2 /((x^2 +x+1)^2 ))dx=((4(√3))/9)arctan (((√3)/3)(2x+1))−((x−1)/(3(x^2 +x+1)))+C    ∫_(−∞) ^∞ (x^2 /((x^2 +x+1)^2 ))dx=((4(√3))/9)π
$$\mathrm{O}{s}\mathrm{trogradski}'\mathrm{s}\:\mathrm{Method}: \\ $$$$\int\frac{{P}\left({x}\right)}{{Q}\left({x}\right)}{dx}=\frac{{P}_{\mathrm{1}} \left({x}\right)}{{Q}_{\mathrm{1}} \left({x}\right)}+\int\frac{{P}_{\mathrm{2}} \left({x}\right)}{{Q}_{\mathrm{2}} \left({x}\right)}{dx} \\ $$$${Q}_{\mathrm{1}} \left({x}\right)={gcd}\left({Q}\left({x}\right);{Q}'\left({x}\right)\right) \\ $$$${Q}_{\mathrm{2}} \left({x}\right)=\frac{{Q}\left({x}\right)}{{Q}_{\mathrm{1}} \left({x}\right)} \\ $$$$ \\ $$$${P}\left({x}\right)={x}^{\mathrm{2}} \\ $$$${Q}\left({x}\right)=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${Q}'\left({x}\right)=\mathrm{2}\left(\mathrm{2}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$$${gcd}\left({Q}\left({x}\right);{Q}'\left({x}\right)\right)=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)={Q}_{\mathrm{1}} \left({x}\right)={Q}_{\mathrm{2}} \left({x}\right) \\ $$$$ \\ $$$$\mathrm{to}\:\mathrm{get}\:{P}_{\mathrm{1}} \left({x}\right)={k}_{\mathrm{1}} {x}+{k}_{\mathrm{2}} ,\:{P}_{\mathrm{2}} \left({x}\right)={k}_{\mathrm{3}} {x}+{k}_{\mathrm{4}} \\ $$$$\frac{{P}\left({x}\right)}{{Q}\left({x}\right)}=\left(\frac{{P}_{\mathrm{1}} \left({x}\right)}{{Q}_{\mathrm{1}} \left({x}\right)}\right)^{'} +\frac{{P}_{\mathrm{2}} \left({x}\right)}{{Q}_{\mathrm{2}} \left({x}\right)} \\ $$$$\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{{k}_{\mathrm{1}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)−\left({k}_{\mathrm{1}} {x}+{k}_{\mathrm{2}} \right)\left(\mathrm{2}{x}+\mathrm{1}\right)}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{{k}_{\mathrm{3}} {x}+{k}_{\mathrm{4}} }{{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{multiplicate}\:\mathrm{with}\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \right] \\ $$$${x}^{\mathrm{2}} ={k}_{\mathrm{3}} {x}^{\mathrm{3}} +\left(−{k}_{\mathrm{1}} +{k}_{\mathrm{3}} +{k}_{\mathrm{4}} \right){x}^{\mathrm{2}} +\left(−\mathrm{2}{k}_{\mathrm{2}} +{k}_{\mathrm{3}} +{k}_{\mathrm{4}} \right){x}+\left({k}_{\mathrm{1}} −{k}_{\mathrm{2}} +{k}_{\mathrm{4}} \right) \\ $$$${k}_{\mathrm{3}} =\mathrm{0} \\ $$$$−{k}_{\mathrm{1}} +{k}_{\mathrm{3}} +{k}_{\mathrm{4}} =\mathrm{1} \\ $$$$−\mathrm{2}{k}_{\mathrm{2}} +{k}_{\mathrm{3}} +{k}_{\mathrm{4}} =\mathrm{0} \\ $$$${k}_{\mathrm{1}} −{k}_{\mathrm{2}} +{k}_{\mathrm{4}} =\mathrm{0} \\ $$$${k}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{3}};\:{k}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}};\:{k}_{\mathrm{3}} =\mathrm{0};\:{k}_{\mathrm{4}} =\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${P}_{\mathrm{1}} \left({x}\right)=−\frac{{x}−\mathrm{1}}{\mathrm{3}};\:{P}_{\mathrm{2}} \left({x}\right)=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$$$\int\frac{{P}\left({x}\right)}{{Q}\left({x}\right)}{dx}=\frac{{P}_{\mathrm{1}} \left({x}\right)}{{Q}_{\mathrm{1}} \left({x}\right)}+\int\frac{{P}_{\mathrm{2}} \left({x}\right)}{{Q}_{\mathrm{2}} \left({x}\right)}{dx}= \\ $$$$=−\frac{{x}−\mathrm{1}}{\mathrm{3}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}+\frac{\mathrm{2}}{\mathrm{3}}\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}=\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}=\frac{\mathrm{4}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}} \\ $$$$ \\ $$$$\frac{\mathrm{8}}{\mathrm{3}}\int\frac{\mathrm{1}}{\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}}{dx}= \\ $$$$\:\:\:\:\:\:\:\:\:\:{u}=\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\rightarrow\:{dx}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{du} \\ $$$$\:\:\:\:\:\:\:\:\:\:{x}=\frac{{u}\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{8}}{\mathrm{3}}\int\frac{\sqrt{\mathrm{3}}}{\mathrm{2}\left(\mathrm{3}{u}^{\mathrm{2}} +\mathrm{3}\right)}{du}=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\int\frac{\mathrm{1}}{{u}^{\mathrm{2}} +\mathrm{1}}{du}= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:{u} \\ $$$$=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)\right) \\ $$$$ \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)\right)−\frac{{x}−\mathrm{1}}{\mathrm{3}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}+{C} \\ $$$$ \\ $$$$\underset{−\infty} {\overset{\infty} {\int}}\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\pi \\ $$
Commented by prof Abdo imad last updated on 23/Apr/18
thank you sir for this new method...
$${thank}\:{you}\:{sir}\:{for}\:{this}\:{new}\:{method}… \\ $$
Answered by sma3l2996 last updated on 23/Apr/18
I=∫_(−∞) ^(+∞) (x^2 /((1+x+x^2 )^2 ))dx=∫_(−∞) ^(+∞) ((x^2 +x+1−(x+1))/((x^2 +x+1)^2 ))dx  =∫_(−∞) ^(+∞) (1/(x^2 +x+1))dx−(1/2)∫_(−∞) ^(+∞) ((2x+2)/((x^2 +x+1)^2 ))dx  =∫_(−∞) ^(+∞) (dx/((x+(1/2))^2 +(3/4)))−(1/2)∫_(−∞) ^(+∞) ((2x+1)/((x^2 +x+1)^2 ))dx−(1/2)∫_(−∞) ^(+∞) (dx/(((x+(1/2))^2 +(3/4))^2 ))  =(4/3)∫_(−∞) ^(+∞) (dx/((((2x+1)/( (√3))))^2 +1))+(1/2)[(1/(x^2 +x+1))]_(−∞) ^(+∞) −(8/9)∫_(−∞) ^(+∞) (dx/(((((2x+1)/( (√3))))^2 +1)^2 ))  let  t=((2x+1)/( (√3)))⇒dx=((√3)/2)dt  so  I=((2(√3))/3)∫_(−∞) ^(+∞) (dt/(t^2 +1))−((4(√3))/9)∫_(−∞) ^(+∞) (dt/((t^2 +1)^2 ))  let  t=tanu⇒dt=(1+tan^2 u)du  I=((2(√3))/3)[tan^(−1) (t)]_(−∞) ^(+∞) −((4(√3))/9)∫_(−π/2) ^(π/2) (du/(1+tan^2 u))  =((2(√3))/3)π−((4(√3))/9)∫_(−π/2) ^(π/2) cos^2 (u)du  ∫_(−π/2) ^(π/2) cos^2 (u)du=(1/2)∫_(−π/2) ^(π/2) (cos(2u)+1)du=(1/2)[(1/2)sin(2x)+x]_(−π/2) ^(π/2)   =(π/2)  I=((2(√3))/3)π−((4(√3))/9)((π/2))=((4(√3))/3)π
$${I}=\int_{−\infty} ^{+\infty} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}=\int_{−\infty} ^{+\infty} \frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}−\left({x}+\mathrm{1}\right)}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\int_{−\infty} ^{+\infty} \frac{\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \frac{\mathrm{2}{x}+\mathrm{2}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\int_{−\infty} ^{+\infty} \frac{{dx}}{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \frac{{dx}}{\left(\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}}\int_{−\infty} ^{+\infty} \frac{{dx}}{\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\right]_{−\infty} ^{+\infty} −\frac{\mathrm{8}}{\mathrm{9}}\int_{−\infty} ^{+\infty} \frac{{dx}}{\left(\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${let}\:\:{t}=\frac{\mathrm{2}{x}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\Rightarrow{dx}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{dt} \\ $$$${so}\:\:{I}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\int_{−\infty} ^{+\infty} \frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\int_{−\infty} ^{+\infty} \frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${let}\:\:{t}={tanu}\Rightarrow{dt}=\left(\mathrm{1}+{tan}^{\mathrm{2}} {u}\right){du} \\ $$$${I}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\left[{tan}^{−\mathrm{1}} \left({t}\right)\right]_{−\infty} ^{+\infty} −\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\int_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} \frac{{du}}{\mathrm{1}+{tan}^{\mathrm{2}} {u}} \\ $$$$=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\pi−\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\int_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} {cos}^{\mathrm{2}} \left({u}\right){du} \\ $$$$\int_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} {cos}^{\mathrm{2}} \left({u}\right){du}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} \left({cos}\left(\mathrm{2}{u}\right)+\mathrm{1}\right){du}=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}{x}\right)+{x}\right]_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} \\ $$$$=\frac{\pi}{\mathrm{2}} \\ $$$${I}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\pi−\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\left(\frac{\pi}{\mathrm{2}}\right)=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\pi \\ $$
Commented by MJS last updated on 23/Apr/18
just a minor mistake in the last line  I=((2(√3))/3)π−((4(√3))/9)((π/2))=((4(√3))/9)π
$$\mathrm{just}\:\mathrm{a}\:\mathrm{minor}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{the}\:\mathrm{last}\:\mathrm{line} \\ $$$${I}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\pi−\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\left(\frac{\pi}{\mathrm{2}}\right)=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *