Menu Close

find-the-value-of-x-2-1-x-x-2-2-dx-




Question Number 33736 by prof Abdo imad last updated on 23/Apr/18
find the value of  ∫_(−∞) ^(+∞)      (x^2 /((1+x +x^2 )^2 ))dx
findthevalueof+x2(1+x+x2)2dx
Commented by prof Abdo imad last updated on 23/Apr/18
let  use residus theorem we have  I = ∫_(−∞) ^(+∞)     (x^2 /(( (x+(1/2))^2  +(3/4))^2 ))  ch. x +(1/2) =((√3)/2) t  give   I = ∫_(−∞) ^(+∞)      ((((((√3)t)/2) −(1/2))^2 )/(((3/4)t^2  +(3/4))^2 )) ((√3)/2)dt  =((16)/9) .((√3)/2)  ∫_(−∞) ^(+∞)         ((3t^2  −2(√3) t +1)/(4( t^2  +1)^2 ))dt  = ((2(√3))/9) ∫_(−∞) ^(+∞)    ((3t^2  −2(√3) t +1)/((t^2  +1)^2 )) dt  .let consider  the complex function ϕ(z) = ((3z^2  −2(√3) z+1)/((z^2  +1)^2 ))  the poles of ϕ are i and−i (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2i π Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)    (1/((2−1)!))((z−i)^2 ϕ(z))^′   =lim_(z→i) (  ((3z^2  −2(√3) z +1)/((z+i)^2 )))^′   =lim_(z→i)   (((6z−2(√3))(z+i)^2  −2(z+i)(3z^2  −2(√3)z +1))/((z+i)^4 ))  =lim_(z→i)  (((6z −2(√3))(z+i) −2(3z^2  −2(√3) z +1))/((z+i)^3 ))  = (((6i −2(√3))(2i) −2( 3i^2  −2(√3) i +1))/((2i)^3 ))  =((−12 −4(√3) i +6  4(√3)i −2)/(−8i)) = ((−8)/(−8i)) = (1/i)  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ((1/i))=2π ⇒  I= ((2(√3))/9) .(2π) =((4π(√3))/9)  ★ I =((4π(√3))/9) ★
letuseresidustheoremwehaveI=+x2((x+12)2+34)2ch.x+12=32tgiveI=+(3t212)2(34t2+34)232dt=169.32+3t223t+14(t2+1)2dt=239+3t223t+1(t2+1)2dt.letconsiderthecomplexfunctionφ(z)=3z223z+1(z2+1)2thepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!((zi)2φ(z))=limzi(3z223z+1(z+i)2)=limzi(6z23)(z+i)22(z+i)(3z223z+1)(z+i)4=limzi(6z23)(z+i)2(3z223z+1)(z+i)3=(6i23)(2i)2(3i223i+1)(2i)3=1243i+643i28i=88i=1i+φ(z)dz=2iπ(1i)=2πI=239.(2π)=4π39I=4π39
Answered by MJS last updated on 28/Apr/18
Ostrogradski′s Method:  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcd(Q(x);Q′(x))  Q_2 (x)=((Q(x))/(Q_1 (x)))    P(x)=x^2   Q(x)=(x^2 +x+1)^2   Q′(x)=2(2x+1)(x^2 +x+1)  gcd(Q(x);Q′(x))=(x^2 +x+1)=Q_1 (x)=Q_2 (x)    to get P_1 (x)=k_1 x+k_2 , P_2 (x)=k_3 x+k_4   ((P(x))/(Q(x)))=(((P_1 (x))/(Q_1 (x))))^′ +((P_2 (x))/(Q_2 (x)))  (x^2 /((x^2 +x+1)^2 ))=((k_1 (x^2 +x+1)−(k_1 x+k_2 )(2x+1))/((x^2 +x+1)^2 ))+((k_3 x+k_4 )/(x^2 +x+1))            [multiplicate with (x^2 +x+1)^2 ]  x^2 =k_3 x^3 +(−k_1 +k_3 +k_4 )x^2 +(−2k_2 +k_3 +k_4 )x+(k_1 −k_2 +k_4 )  k_3 =0  −k_1 +k_3 +k_4 =1  −2k_2 +k_3 +k_4 =0  k_1 −k_2 +k_4 =0  k_1 =−(1/3); k_2 =(1/3); k_3 =0; k_4 =(2/3)  P_1 (x)=−((x−1)/3); P_2 (x)=(2/3)    ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx=  =−((x−1)/(3(x^2 +x+1)))+(2/3)∫(1/(x^2 +x+1))dx    (1/(x^2 +x+1))=(1/((x+(1/2))^2 +(3/4)))=(4/((2x+1)^2 +3))    (8/3)∫(1/((2x+1)^2 +3))dx=            u=((2x+1)/( (√3))) → dx=((√3)/2)du            x=((u(√3)−1)/2)            (8/3)∫((√3)/(2(3u^2 +3)))du=((4(√3))/9)∫(1/(u^2 +1))du=            =((4(√3))/9)arctan u  =((4(√3))/9)arctan (((√3)/3)(2x+1))    ∫(x^2 /((x^2 +x+1)^2 ))dx=((4(√3))/9)arctan (((√3)/3)(2x+1))−((x−1)/(3(x^2 +x+1)))+C    ∫_(−∞) ^∞ (x^2 /((x^2 +x+1)^2 ))dx=((4(√3))/9)π
OstrogradskisMethod:P(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxQ1(x)=gcd(Q(x);Q(x))Q2(x)=Q(x)Q1(x)P(x)=x2Q(x)=(x2+x+1)2Q(x)=2(2x+1)(x2+x+1)gcd(Q(x);Q(x))=(x2+x+1)=Q1(x)=Q2(x)togetP1(x)=k1x+k2,P2(x)=k3x+k4P(x)Q(x)=(P1(x)Q1(x))+P2(x)Q2(x)x2(x2+x+1)2=k1(x2+x+1)(k1x+k2)(2x+1)(x2+x+1)2+k3x+k4x2+x+1[multiplicatewith(x2+x+1)2]x2=k3x3+(k1+k3+k4)x2+(2k2+k3+k4)x+(k1k2+k4)k3=0k1+k3+k4=12k2+k3+k4=0k1k2+k4=0k1=13;k2=13;k3=0;k4=23P1(x)=x13;P2(x)=23P(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dx==x13(x2+x+1)+231x2+x+1dx1x2+x+1=1(x+12)2+34=4(2x+1)2+3831(2x+1)2+3dx=u=2x+13dx=32dux=u3128332(3u2+3)du=4391u2+1du==439arctanu=439arctan(33(2x+1))x2(x2+x+1)2dx=439arctan(33(2x+1))x13(x2+x+1)+Cx2(x2+x+1)2dx=439π
Commented by prof Abdo imad last updated on 23/Apr/18
thank you sir for this new method...
thankyousirforthisnewmethod
Answered by sma3l2996 last updated on 23/Apr/18
I=∫_(−∞) ^(+∞) (x^2 /((1+x+x^2 )^2 ))dx=∫_(−∞) ^(+∞) ((x^2 +x+1−(x+1))/((x^2 +x+1)^2 ))dx  =∫_(−∞) ^(+∞) (1/(x^2 +x+1))dx−(1/2)∫_(−∞) ^(+∞) ((2x+2)/((x^2 +x+1)^2 ))dx  =∫_(−∞) ^(+∞) (dx/((x+(1/2))^2 +(3/4)))−(1/2)∫_(−∞) ^(+∞) ((2x+1)/((x^2 +x+1)^2 ))dx−(1/2)∫_(−∞) ^(+∞) (dx/(((x+(1/2))^2 +(3/4))^2 ))  =(4/3)∫_(−∞) ^(+∞) (dx/((((2x+1)/( (√3))))^2 +1))+(1/2)[(1/(x^2 +x+1))]_(−∞) ^(+∞) −(8/9)∫_(−∞) ^(+∞) (dx/(((((2x+1)/( (√3))))^2 +1)^2 ))  let  t=((2x+1)/( (√3)))⇒dx=((√3)/2)dt  so  I=((2(√3))/3)∫_(−∞) ^(+∞) (dt/(t^2 +1))−((4(√3))/9)∫_(−∞) ^(+∞) (dt/((t^2 +1)^2 ))  let  t=tanu⇒dt=(1+tan^2 u)du  I=((2(√3))/3)[tan^(−1) (t)]_(−∞) ^(+∞) −((4(√3))/9)∫_(−π/2) ^(π/2) (du/(1+tan^2 u))  =((2(√3))/3)π−((4(√3))/9)∫_(−π/2) ^(π/2) cos^2 (u)du  ∫_(−π/2) ^(π/2) cos^2 (u)du=(1/2)∫_(−π/2) ^(π/2) (cos(2u)+1)du=(1/2)[(1/2)sin(2x)+x]_(−π/2) ^(π/2)   =(π/2)  I=((2(√3))/3)π−((4(√3))/9)((π/2))=((4(√3))/3)π
I=+x2(1+x+x2)2dx=+x2+x+1(x+1)(x2+x+1)2dx=+1x2+x+1dx12+2x+2(x2+x+1)2dx=+dx(x+12)2+3412+2x+1(x2+x+1)2dx12+dx((x+12)2+34)2=43+dx(2x+13)2+1+12[1x2+x+1]+89+dx((2x+13)2+1)2lett=2x+13dx=32dtsoI=233+dtt2+1439+dt(t2+1)2lett=tanudt=(1+tan2u)duI=233[tan1(t)]+439π/2π/2du1+tan2u=233π439π/2π/2cos2(u)duπ/2π/2cos2(u)du=12π/2π/2(cos(2u)+1)du=12[12sin(2x)+x]π/2π/2=π2I=233π439(π2)=433π
Commented by MJS last updated on 23/Apr/18
just a minor mistake in the last line  I=((2(√3))/3)π−((4(√3))/9)((π/2))=((4(√3))/9)π
justaminormistakeinthelastlineI=233π439(π2)=439π

Leave a Reply

Your email address will not be published. Required fields are marked *