Menu Close

Find-the-value-of-x-4-cos-x-3-sin-x-2-




Question Number 58804 by Tawa1 last updated on 30/Apr/19
Find the value of  x:    4 cos x + 3 sin x  =  2
Findthevalueofx:4cosx+3sinx=2
Commented by MJS last updated on 30/Apr/19
generally  acos x +bsin x =c  x=2arctan t  t^2 −((2b)/(a+c))t−((a−c)/(a+c))=0  t=((b±(√(a^2 +b^2 −c^2 )))/(a+c))  x=2πn+2arctan ((b±(√(a^2 +b^2 −c^2 )))/(a+c)); n∈Z  even if t∉R
generallyacosx+bsinx=cx=2arctantt22ba+ctaca+c=0t=b±a2+b2c2a+cx=2πn+2arctanb±a2+b2c2a+c;nZeveniftR
Answered by MJS last updated on 30/Apr/19
4cos x +3sin x =2  x=2arctan t  4((1−t^2 )/(1+t^2 ))+3((2t)/(1+t^2 ))=2  t^2 −t−(1/3)=0  t=(1/2)±((√(21))/6)  x=2πn+2arctan ((3±(√(21)))/6); n∈Z
4cosx+3sinx=2x=2arctant41t21+t2+32t1+t2=2t2t13=0t=12±216x=2πn+2arctan3±216;nZ
Commented by Tawa1 last updated on 30/Apr/19
God bless you sir
Godblessyousir
Commented by Tawa1 last updated on 30/Apr/19
Sir, why when  n = 1,   the equation is not equal to  2
Sir,whywhenn=1,theequationisnotequalto2
Answered by mr W last updated on 30/Apr/19
4 cos x + 3 sin x  =  2  (4/5) cos x + (3/5) sin x  =  (2/5)  cos α cos x + sin α sin x  =  (2/5)  cos (x−α)  =  (2/5)  ⇒x−α=2nπ±cos^(−1) (2/5)  ⇒x=2nπ+α±cos^(−1) (2/5)  ⇒x=2nπ+cos^(−1) (4/5)±cos^(−1) (2/5)
4cosx+3sinx=245cosx+35sinx=25cosαcosx+sinαsinx=25cos(xα)=25xα=2nπ±cos125x=2nπ+α±cos125x=2nπ+cos145±cos125
Commented by Tawa1 last updated on 30/Apr/19
God bless you sir
Godblessyousir
Commented by Tawa1 last updated on 30/Apr/19
Sir, when  n = 1,  the equation is not equal to  2.
Sir,whenn=1,theequationisnotequalto2.
Commented by mr W last updated on 30/Apr/19
how did you come to that?    with n=1:  x=2π+cos^(−1) (4/5)+cos^(−1) (2/5)  or  x=2π+cos^(−1) (4/5)−cos^(−1) (2/5)    with x=2π+cos^(−1) (4/5)+cos^(−1) (2/5):  cos x=cos (cos^(−1) (4/5)+cos^(−1) (2/5))  =(4/5)×(2/5)−(3/5)×((√(21))/5)=((8−3(√(21)))/(25))  sin x=sin (cos^(−1) (4/5)+cos^(−1) (2/5))  =(3/5)×(2/5)+(4/5)×((√(21))/5)=((6+4(√(21)))/(25))  4 cos x+3 sin x=((4(8−3(√(21)))+3(6+4(√(21))))/(25))  =((32+18)/(25))=((50)/(25))=2 !    with x=2π+cos^(−1) (4/5)−cos^(−1) (2/5):  cos x=cos (cos^(−1) (4/5)−cos^(−1) (2/5))  =(4/5)×(2/5)+(3/5)×((√(21))/5)=((8+3(√(21)))/(25))  sin x=sin (cos^(−1) (4/5)−cos^(−1) (2/5))  =(3/5)×(2/5)−(4/5)×((√(21))/5)=((6−4(√(21)))/(25))  4 cos x+3 sin x=((4(8+3(√(21)))+3(6−4(√(21))))/(25))  =((32+18)/(25))=((50)/(25))=2 !
howdidyoucometothat?withn=1:x=2π+cos145+cos125orx=2π+cos145cos125withx=2π+cos145+cos125:cosx=cos(cos145+cos125)=45×2535×215=832125sinx=sin(cos145+cos125)=35×25+45×215=6+421254cosx+3sinx=4(8321)+3(6+421)25=32+1825=5025=2!withx=2π+cos145cos125:cosx=cos(cos145cos125)=45×25+35×215=8+32125sinx=sin(cos145cos125)=35×2545×215=6421254cosx+3sinx=4(8+321)+3(6421)25=32+1825=5025=2!
Commented by Tawa1 last updated on 30/Apr/19
Sir, when i used π = 360,  i got 2 now.  Before i used  π = 3.142
Sir,wheniusedπ=360,igot2now.Beforeiusedπ=3.142
Commented by MJS last updated on 30/Apr/19
maybe on your calculator you must set the  mode for the angle  usually it′s “deg” for degree (full circle =360°)  and “rad” for radiant (full circle =2π)
maybeonyourcalculatoryoumustsetthemodefortheangleusuallyitsdegfordegree(fullcircle=360°)andradforradiant(fullcircle=2π)
Commented by Tawa1 last updated on 30/Apr/19
Ohh. Thanks for your time sir
Ohh.Thanksforyourtimesir
Commented by MJS last updated on 30/Apr/19
you′re welcome
yourewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *