Menu Close

Find-the-value-of-x-by-using-Cardon-s-Method-1-x-2-x-1-3-x-2-1-




Question Number 156579 by Mr.D.N. last updated on 12/Oct/21
 Find the value of x by using Cardon′s Method.     (1/x) + (2/(x+1))+ (3/(x+2)) = 1
FindthevalueofxbyusingCardonsMethod.1x+2x+1+3x+2=1
Answered by mr W last updated on 13/Oct/21
(((x+1)(x+2)+2x(x+2)+3x(x+1))/(x(x+1)(x+2)))=1  x^2 +3x+2+2x^2 +4x+3x^2 +3x=x^3 +3x^2 +2x  x^3 −3x^2 −8x−2=0  x=t+1  t^3 +3t^2 +3t+1−3t^2 −6t−3−8t−8−2=0  t^3 −11t−12=0  t=((2(√(33)))/3) sin (−(1/3)sin^(−1) ((18(√(33)))/( 121))+((2kπ)/3))  ⇒x=1+((2(√(33)))/3) sin (−(1/3)sin^(−1) ((18(√(33)))/( 121))+((2kπ)/3)),k=0,1,2    cardano method can′t be applied!
(x+1)(x+2)+2x(x+2)+3x(x+1)x(x+1)(x+2)=1x2+3x+2+2x2+4x+3x2+3x=x3+3x2+2xx33x28x2=0x=t+1t3+3t2+3t+13t26t38t82=0t311t12=0t=2333sin(13sin11833121+2kπ3)x=1+2333sin(13sin11833121+2kπ3),k=0,1,2cardanomethodcantbeapplied!
Commented by mr W last updated on 14/Oct/21
how to solve t^3 −11t−12=0 ?  see Q155945
howtosolvet311t12=0?seeQ155945
Commented by Mr.D.N. last updated on 21/Oct/21
thank you mr.W
thankyoumr.W

Leave a Reply

Your email address will not be published. Required fields are marked *