Menu Close

find-the-value-of-x-if-the-inverse-of-the-matrix-x-5-2-7-x-is-0-0-0-0-




Question Number 35426 by Rio Mike last updated on 18/May/18
find the value of x if the inverse  of the matrix  (((x+5        2)),((7               x)) ) is   (((0         0)),((0         0)) )
$${find}\:{the}\:{value}\:{of}\:{x}\:{if}\:{the}\:{inverse} \\ $$$${of}\:{the}\:{matrix}\:\begin{pmatrix}{{x}+\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}}\end{pmatrix}\:{is} \\ $$$$\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix} \\ $$
Commented by prof Abdo imad last updated on 19/May/18
the caracteristic polynom of  A is  det(A −uI) = determinant (((x+5−u        2)),((7              x−u)))  =(x−u)(x−u+5) −14  =(x−u)^2  +5x−5u−14  =u^2  −2x u +x^2  +5x−5u −14  = u^2  −(2x+5)u  +x^2  +5x −14  Cayley hamilton  theorem give p_c (A)=0 ⇒  A^2  −(2x+5)A  +(x^2  +5x −14)I=0⇒  A^2  −(2x+5)A =(x^2  +5x−14)I ⇒  A( A −(2x+5)I)=(x^2  +5x −14)I ⇒  A.((A −(2x+5)I)/(x^2  +5x −14)) =I⇒A −(2x+5)I =0 ⇒   (((x+5       2)),((7              x)) )  − (((2x+5        0 )),((0             2x+5)) )=0 ⇒   (((−x        2)),((7          −x−5)) )=0     but that is impossible  tbe  value of x don t exist ....
$${the}\:{caracteristic}\:{polynom}\:{of}\:\:{A}\:{is} \\ $$$${det}\left({A}\:−{uI}\right)\:=\begin{vmatrix}{{x}+\mathrm{5}−{u}\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}−{u}}\end{vmatrix} \\ $$$$=\left({x}−{u}\right)\left({x}−{u}+\mathrm{5}\right)\:−\mathrm{14} \\ $$$$=\left({x}−{u}\right)^{\mathrm{2}} \:+\mathrm{5}{x}−\mathrm{5}{u}−\mathrm{14} \\ $$$$={u}^{\mathrm{2}} \:−\mathrm{2}{x}\:{u}\:+{x}^{\mathrm{2}} \:+\mathrm{5}{x}−\mathrm{5}{u}\:−\mathrm{14} \\ $$$$=\:{u}^{\mathrm{2}} \:−\left(\mathrm{2}{x}+\mathrm{5}\right){u}\:\:+{x}^{\mathrm{2}} \:+\mathrm{5}{x}\:−\mathrm{14}\:\:{Cayley}\:{hamilton} \\ $$$${theorem}\:{give}\:{p}_{{c}} \left({A}\right)=\mathrm{0}\:\Rightarrow \\ $$$${A}^{\mathrm{2}} \:−\left(\mathrm{2}{x}+\mathrm{5}\right){A}\:\:+\left({x}^{\mathrm{2}} \:+\mathrm{5}{x}\:−\mathrm{14}\right){I}=\mathrm{0}\Rightarrow \\ $$$${A}^{\mathrm{2}} \:−\left(\mathrm{2}{x}+\mathrm{5}\right){A}\:=\left({x}^{\mathrm{2}} \:+\mathrm{5}{x}−\mathrm{14}\right){I}\:\Rightarrow \\ $$$${A}\left(\:{A}\:−\left(\mathrm{2}{x}+\mathrm{5}\right){I}\right)=\left({x}^{\mathrm{2}} \:+\mathrm{5}{x}\:−\mathrm{14}\right){I}\:\Rightarrow \\ $$$${A}.\frac{{A}\:−\left(\mathrm{2}{x}+\mathrm{5}\right){I}}{{x}^{\mathrm{2}} \:+\mathrm{5}{x}\:−\mathrm{14}}\:={I}\Rightarrow{A}\:−\left(\mathrm{2}{x}+\mathrm{5}\right){I}\:=\mathrm{0}\:\Rightarrow \\ $$$$\begin{pmatrix}{{x}+\mathrm{5}\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}}\end{pmatrix}\:\:−\begin{pmatrix}{\mathrm{2}{x}+\mathrm{5}\:\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{x}+\mathrm{5}}\end{pmatrix}=\mathrm{0}\:\Rightarrow \\ $$$$\begin{pmatrix}{−{x}\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{7}\:\:\:\:\:\:\:\:\:\:−{x}−\mathrm{5}}\end{pmatrix}=\mathrm{0}\:\:\:\:\:{but}\:{that}\:{is}\:{impossible}\:\:{tbe} \\ $$$${value}\:{of}\:{x}\:{don}\:{t}\:{exist}\:…. \\ $$$$ \\ $$
Commented by abdo mathsup 649 cc last updated on 19/May/18
if A^(−1)  =  (((0       0 )),((0        0)) )  is inverse of A we get  A.A^(−1) = I ⇒  (((0      0)),((0       0)) )  = (((1        0 )),((0        1)) )  and this equality is impossible ...
$${if}\:{A}^{−\mathrm{1}} \:=\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:{is}\:{inverse}\:{of}\:{A}\:{we}\:{get} \\ $$$${A}.{A}^{−\mathrm{1}} =\:{I}\:\Rightarrow\:\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}\:}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${and}\:{this}\:{equality}\:{is}\:{impossible}\:… \\ $$
Answered by Rio Mike last updated on 19/May/18
 if  the inverse of a matrix is    (((0      0)),((0      0)) )  the it is a singular matrix  hence  x(x+5)−2(7)=0  x^2 +5x−14=0  x^2 −2x+7x−14=0  x(x−2)+7(x−2)  (x−2)(x+7)=0
$$\:{if}\:\:{the}\:{inverse}\:{of}\:{a}\:{matrix}\:{is}\: \\ $$$$\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\mathrm{0}}\end{pmatrix}\:\:{the}\:{it}\:{is}\:{a}\:{singular}\:{matrix} \\ $$$${hence} \\ $$$${x}\left({x}+\mathrm{5}\right)−\mathrm{2}\left(\mathrm{7}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{14}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{7}{x}−\mathrm{14}=\mathrm{0} \\ $$$${x}\left({x}−\mathrm{2}\right)+\mathrm{7}\left({x}−\mathrm{2}\right) \\ $$$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{7}\right)=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *