Menu Close

find-the-value-of-x-if-the-inverse-of-the-matrix-x-5-2-7-x-is-0-0-0-0-




Question Number 35426 by Rio Mike last updated on 18/May/18
find the value of x if the inverse  of the matrix  (((x+5        2)),((7               x)) ) is   (((0         0)),((0         0)) )
findthevalueofxiftheinverseofthematrix(x+527x)is(0000)
Commented by prof Abdo imad last updated on 19/May/18
the caracteristic polynom of  A is  det(A −uI) = determinant (((x+5−u        2)),((7              x−u)))  =(x−u)(x−u+5) −14  =(x−u)^2  +5x−5u−14  =u^2  −2x u +x^2  +5x−5u −14  = u^2  −(2x+5)u  +x^2  +5x −14  Cayley hamilton  theorem give p_c (A)=0 ⇒  A^2  −(2x+5)A  +(x^2  +5x −14)I=0⇒  A^2  −(2x+5)A =(x^2  +5x−14)I ⇒  A( A −(2x+5)I)=(x^2  +5x −14)I ⇒  A.((A −(2x+5)I)/(x^2  +5x −14)) =I⇒A −(2x+5)I =0 ⇒   (((x+5       2)),((7              x)) )  − (((2x+5        0 )),((0             2x+5)) )=0 ⇒   (((−x        2)),((7          −x−5)) )=0     but that is impossible  tbe  value of x don t exist ....
thecaracteristicpolynomofAisdet(AuI)=|x+5u27xu|=(xu)(xu+5)14=(xu)2+5x5u14=u22xu+x2+5x5u14=u2(2x+5)u+x2+5x14Cayleyhamiltontheoremgivepc(A)=0A2(2x+5)A+(x2+5x14)I=0A2(2x+5)A=(x2+5x14)IA(A(2x+5)I)=(x2+5x14)IA.A(2x+5)Ix2+5x14=IA(2x+5)I=0(x+527x)(2x+5002x+5)=0(x27x5)=0butthatisimpossibletbevalueofxdontexist.
Commented by abdo mathsup 649 cc last updated on 19/May/18
if A^(−1)  =  (((0       0 )),((0        0)) )  is inverse of A we get  A.A^(−1) = I ⇒  (((0      0)),((0       0)) )  = (((1        0 )),((0        1)) )  and this equality is impossible ...
ifA1=(0000)isinverseofAwegetA.A1=I(0000)=(1001)andthisequalityisimpossible
Answered by Rio Mike last updated on 19/May/18
 if  the inverse of a matrix is    (((0      0)),((0      0)) )  the it is a singular matrix  hence  x(x+5)−2(7)=0  x^2 +5x−14=0  x^2 −2x+7x−14=0  x(x−2)+7(x−2)  (x−2)(x+7)=0
iftheinverseofamatrixis(0000)theitisasingularmatrixhencex(x+5)2(7)=0x2+5x14=0x22x+7x14=0x(x2)+7(x2)(x2)(x+7)=0

Leave a Reply

Your email address will not be published. Required fields are marked *