find-the-value-of-x-such-that-x-2-mod-5-x-3-mod-8-x-2-mod-3- Tinku Tara June 4, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 127111 by benjo_mathlover last updated on 26/Dec/20 findthevalueofxsuchthat{x=2(mod5)x=3(mod8)x=2(mod3) Answered by liberty last updated on 04/Jan/21 given{x=2(mod5)…(i)x=3(mod8)…(ii)x=2(mod3)…(iii)for(i)⇒24a≡2(mod5)−a≡2(mod5);a≡−2(mod5)for(ii)⇒15b≡3(mod8)−b≡3(mod8);b≡−3(mod8)for(iii)⇒40c≡2(mod3)c≡2(mod3)nowwehavethegeneralsolution∴24(−2)+15(−3)+40(2)+120k;k∈Zi.e:120k−13;k∈Zor120k+107;k∈Z Answered by physicstutes last updated on 27/Dec/20 x≡2(mod3)…..(i)⇒x=3t+2,t∈Z……(i)x≡3(mod8)……(ii)(i)in(i)⇒3t+2≡3(mod8)3t≡−1(mod8)but−1≡7(mod8)therefore3t≡7(mod8)bytrialanderrorwefindanumbertwhichwhenmultipliedby3anddividedby8givesaremainderof7.soifindt=3aftersometries.⇒t≡3(mod8)⇒t=8s+3,s∈Z……(iii)putting(iii)in(i)⇒x=3(8s+3)+2=24s+11so:x=24s+11…..(iv)x≡2(mod5)……(v)(iv)in(v)⇒24s+11≡2(mod5)24s≡−9(mod5)but−9≡1(mod5)therefore24s≡1(mod5)bytrialanderrors≡4(mod5)⇒s=5u+4…..(vii)u∈Z⇒x=24(5u+4)+11x=120u+107x≡107(mod120) Answered by floor(10²Eta[1]) last updated on 27/Dec/20 x≡3(mod8)⇒x=8a+3,a∈Z8a+3≡3a+3≡2(mod5)3a≡4(mod5)⇒a≡3(mod5)⇒a=5b+3⇒x=8(5b+3)+3=40b+27,b∈Z40b+27≡b≡2(mod3)⇒b=3c+2⇒x=40(3c+2)+27⇒x=120c+107,c∈Z Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-127109Next Next post: arcsin-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.