Menu Close

find-the-value-of-x-such-that-x-2-mod-5-x-3-mod-8-x-2-mod-3-




Question Number 127111 by benjo_mathlover last updated on 26/Dec/20
 find the value of x such that     { ((x=2 (mod 5))),((x=3 (mod 8) )),((x=2 (mod 3))) :}
findthevalueofxsuchthat{x=2(mod5)x=3(mod8)x=2(mod3)
Answered by liberty last updated on 04/Jan/21
given  { ((x=2 (mod 5)...(i))),((x=3 (mod 8)...(ii))),((x=2 (mod 3)...(iii))) :}  for(i) ⇒ 24a ≡ 2 (mod 5)                          −a≡2 (mod 5); a ≡−2 (mod 5)  for(ii)⇒15b ≡ 3 (mod 8)                         −b ≡ 3 (mod 8) ; b ≡−3 (mod 8)  for(iii)⇒40c ≡ 2 (mod 3)                            c ≡ 2 (mod 3)  now we have the general solution   ∴ 24(−2)+15(−3)+40(2)+120k ; k∈Z  i.e : 120k−13 ; k∈Z or 120k +107 ; k∈Z
given{x=2(mod5)(i)x=3(mod8)(ii)x=2(mod3)(iii)for(i)24a2(mod5)a2(mod5);a2(mod5)for(ii)15b3(mod8)b3(mod8);b3(mod8)for(iii)40c2(mod3)c2(mod3)nowwehavethegeneralsolution24(2)+15(3)+40(2)+120k;kZi.e:120k13;kZor120k+107;kZ
Answered by physicstutes last updated on 27/Dec/20
x ≡ 2 (mod 3) .....(i) ⇒ x = 3t + 2 , t ∈ Z......(i)   x ≡ 3 (mod 8)......(ii)  (i) in (i) ⇒ 3t + 2 ≡ 3 (mod 8)   3t ≡ −1 (mod 8)  but −1 ≡ 7 (mod 8)  therefore    3t ≡ 7 (mod 8) by trial and error we find a number t which when  multiplied by 3 and divided by 8 gives a remainder of 7.   so i find t = 3 after some tries.  ⇒ t ≡ 3 (mod 8) ⇒ t = 8s + 3 , s ∈ Z......(iii)  putting (iii) in (i) ⇒ x = 3(8s + 3) +2 = 24s +11   so :    x = 24 s + 11 .....(iv)    x ≡ 2 (mod 5)......(v)  (iv) in (v) ⇒   24s +11 ≡ 2 (mod 5)   24 s ≡ −9 (mod 5)   but −9 ≡ 1 (mod 5) therefore  24s ≡ 1 (mod 5) by trial and error   s ≡ 4 (mod 5) ⇒ s = 5u + 4 .....(vii) u ∈ Z  ⇒ x = 24(5u + 4) + 11       x = 120 u +107  x ≡ 107 (mod 120)
x2(mod3)..(i)x=3t+2,tZ(i)x3(mod8)(ii)(i)in(i)3t+23(mod8)3t1(mod8)but17(mod8)therefore3t7(mod8)bytrialanderrorwefindanumbertwhichwhenmultipliedby3anddividedby8givesaremainderof7.soifindt=3aftersometries.t3(mod8)t=8s+3,sZ(iii)putting(iii)in(i)x=3(8s+3)+2=24s+11so:x=24s+11..(iv)x2(mod5)(v)(iv)in(v)24s+112(mod5)24s9(mod5)but91(mod5)therefore24s1(mod5)bytrialanderrors4(mod5)s=5u+4..(vii)uZx=24(5u+4)+11x=120u+107x107(mod120)
Answered by floor(10²Eta[1]) last updated on 27/Dec/20
x≡3(mod8)⇒x=8a+3, a∈Z  8a+3≡3a+3≡2(mod5)  3a≡4(mod5)⇒a≡3(mod5)  ⇒a=5b+3  ⇒x=8(5b+3)+3=40b+27, b∈Z  40b+27≡b≡2(mod3)⇒b=3c+2  ⇒x=40(3c+2)+27  ⇒x=120c+107, c∈Z
x3(mod8)x=8a+3,aZ8a+33a+32(mod5)3a4(mod5)a3(mod5)a=5b+3x=8(5b+3)+3=40b+27,bZ40b+27b2(mod3)b=3c+2x=40(3c+2)+27x=120c+107,cZ

Leave a Reply

Your email address will not be published. Required fields are marked *