Menu Close

find-the-value-tan-2tan2-2-2-tan2-2-2-3-tan2-3-2-n-1-tan2-n-1-




Question Number 52516 by tanmay.chaudhury50@gmail.com last updated on 09/Jan/19
find the value  tanθ+2tan2θ+2^2 tan2^2 θ+2^3 tan2^3 θ+..+2^(n−1) tan2^(n−1) θ
findthevaluetanθ+2tan2θ+22tan22θ+23tan23θ+..+2n1tan2n1θ
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Jan/19
cotθ−tanθ  =((1−tan^2 θ)/(tanθ))  =2×((1−tan^2 θ)/(2tanθ))=(2/(tan2θ))=2cot2θ  tanθ=cotθ−2cot2θ........................eqn 1  2×tan2θ=2×cot2θ−2×2cot2^2 θ......eqn2  2^2 tan2^2 θ=2^2 cot2^2 θ−2^3 cot2^3 θ...........eqn3  .......  ......  2^(n−1) tan2^(n−1) θ=2^(n−1) cot2^(n−1) θ−2^n cot2^n θ  now add left hand side=S  when adding only red coloured terms remain  others terms cancelled each other..  so S=cotθ−2^n cot2^n θ
cotθtanθ=1tan2θtanθ=2×1tan2θ2tanθ=2tan2θ=2cot2θtanθ=cotθ2cot2θeqn12×tan2θ=2×cot2θ2×2cot22θeqn222tan22θ=22cot22θ23cot23θ..eqn3.2n1tan2n1θ=2n1cot2n1θ2ncot2nθnowaddlefthandside=Swhenaddingonlyredcolouredtermsremainotherstermscancelledeachother..soS=cotθ2ncot2nθ
Commented by malwaan last updated on 10/Jan/19
great thank you
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *