Menu Close

Find-the-values-of-and-0-lt-lt-pi-2-satisfying-the-following-equation-cos-cos-cos-1-8-




Question Number 15300 by Tinkutara last updated on 09/Jun/17
Find the values of α and β, 0 < α, β < (π/2)  satisfying the following equation  cos α cos β cos (α + β) = −(1/8) .
Findthevaluesofαandβ,0<α,β<π2satisfyingthefollowingequationcosαcosβcos(α+β)=18.
Commented by mrW1 last updated on 09/Jun/17
α=β=(π/3)
α=β=π3
Commented by mrW1 last updated on 10/Jun/17
F(α,β)=cos α cos β cos (α + β)  let′s find the minimum of this function  (∂F/∂α)=−sin α cos β cos (α+β)−cos α cos β sin (α+β)  =−cos β [sin α cos (α+β)+cos α  sin (α+β)]  =−cos β sin (2α+β)=0  ⇒ sin (2α+β)=0  ⇒ 2α+β=π      ...(i)  (∂F/∂β)=−cos  α sin β cos (α+β)−cos α cos β sin (α+β)  =−cos α [sin β cos (α+β)+cos β  sin (α+β)]  =−cos α sin (α+2β)=0  ⇒ sin (α+2β)=0  ⇒ α+2β=π      ...(ii)    from (i) and (ii)  ⇒α=β=(π/3)  minimum =cos (π/3) cos (π/3) cos ((2π)/3)=−(1/8)  ∴ for cos α cos β cos (α + β) = −(1/8)  there is only one solution:  α=β=(π/3)
F(α,β)=cosαcosβcos(α+β)letsfindtheminimumofthisfunctionFα=sinαcosβcos(α+β)cosαcosβsin(α+β)=cosβ[sinαcos(α+β)+cosαsin(α+β)]=cosβsin(2α+β)=0sin(2α+β)=02α+β=π(i)Fβ=cosαsinβcos(α+β)cosαcosβsin(α+β)=cosα[sinβcos(α+β)+cosβsin(α+β)]=cosαsin(α+2β)=0sin(α+2β)=0α+2β=π(ii)from(i)and(ii)α=β=π3minimum=cosπ3cosπ3cos2π3=18forcosαcosβcos(α+β)=18thereisonlyonesolution:α=β=π3
Commented by Tinkutara last updated on 10/Jun/17
Thanks Sir!
ThanksSir!
Answered by Tinkutara last updated on 09/Jul/17
8 cos α cos β cos (α + β) + 1 = 0  4 cos (α + β) [cos (α + β) + cos (α − β)] + 1 = 0  4 cos^2  (α + β) + 4 cos (α + β) cos (α − β)  + cos^2  (α − β) + sin^2  (α − β) = 0  [2 cos (α + β) + cos (α − β)]^2  + sin^2  (α − β) = 0  sin (α − β) = 0 and 2 cos (α + β) + cos (α − β) = 0  ⇒ α = β and this gives  2 cos 2α + 1 = 0 ⇒ α = (π/3), as 0 < α, β < (π/2).  So 𝛂 = 𝛃 = (𝛑/3).
8cosαcosβcos(α+β)+1=04cos(α+β)[cos(α+β)+cos(αβ)]+1=04cos2(α+β)+4cos(α+β)cos(αβ)+cos2(αβ)+sin2(αβ)=0[2cos(α+β)+cos(αβ)]2+sin2(αβ)=0sin(αβ)=0and2cos(α+β)+cos(αβ)=0α=βandthisgives2cos2α+1=0α=π3,as0<α,β<π2.Soα=β=π3.

Leave a Reply

Your email address will not be published. Required fields are marked *