Menu Close

find-the-values-of-I-0-pi-cos-4-dx-and-J-0-pi-sin-4-dx-




Question Number 36406 by abdo mathsup 649 cc last updated on 01/Jun/18
find the values of  I = ∫_0 ^π cos^4 dx and  J = ∫_0 ^π  sin^4 dx .
findthevaluesofI=0πcos4dxandJ=0πsin4dx.
Commented by abdo.msup.com last updated on 05/Jun/18
we have  I +J =∫_0 ^π  (cos^4 x +sin^4 x)dx  =∫_0 ^π   {(cos^2 x +sin^2 x)^2  −2cos^2 xsin^2 x}dx  =π −2 ∫_0 ^π  (1/4)(sin(2x))^2 dx  =π −(1/2) ∫_0 ^π   ((1−cos(4x))/2)dx  =π −(π/4) + (1/(16))[sin(4x)]_0 ^π  =((3π)/4) also  I −J = ∫_0 ^π  (cos^4 x −sin^4 x)dx  = ∫_0 ^π  cos^2 x −sin^2 x dx  = ∫_0 ^π   cos(2x)dx=(1/2)[ sin(2x)]_0 ^π =0 so  I =J ⇒ 2I = ((3π)/4) ⇒ I =((3π)/8) and J =((3π)/8)
wehaveI+J=0π(cos4x+sin4x)dx=0π{(cos2x+sin2x)22cos2xsin2x}dx=π20π14(sin(2x))2dx=π120π1cos(4x)2dx=ππ4+116[sin(4x)]0π=3π4alsoIJ=0π(cos4xsin4x)dx=0πcos2xsin2xdx=0πcos(2x)dx=12[sin(2x)]0π=0soI=J2I=3π4I=3π8andJ=3π8
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18
=(1/4)∫_0 ^Π (1+cos2x)^2 dx  =(1/4)∫_0 ^Π (1+2cos2x+cos^2 2x )dx  =(1/4)∫_0 ^Π dx+(1/2)∫_0 ^Π cos2xdx+(1/8)∫_0 ^Π (1+cos4x) dx  =(1/4)∫_0 ^Π dx+(1/2)∫_0 ^Π cos2x dx+(1/8)∫_0 ^Π dx+(1/8)∫_0 ^Π cos4x  =(Π/4)+(Π/8)  =((3Π)/8)
=140Π(1+cos2x)2dx=140Π(1+2cos2x+cos22x)dx=140Πdx+120Πcos2xdx+180Π(1+cos4x)dx=140Πdx+120Πcos2xdx+180Πdx+180Πcos4x=Π4+Π8=3Π8
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jun/18
j=∫_0 ^(Π() (((1−cos2x)/2))^2   =(1/4)∫_0 ^Π 1−2cos2x+((1+cos4x)/2)dx  =(1/4)∫_0 ^Π dx−(1/2)∫_0 ^Π cos2xdx+(1/8)∫_0 ^Π dx+(1/8)∫_0 ^Π cos4x  =(Π/4)+(Π/8)=((3Π)/8)
j=0Π((1cos2x2)2=140Π12cos2x+1+cos4x2dx=140Πdx120Πcos2xdx+180Πdx+180Πcos4x=Π4+Π8=3Π8

Leave a Reply

Your email address will not be published. Required fields are marked *