Menu Close

find-the-values-of-n-2-1-2-n-n-1-




Question Number 28981 by abdo imad last updated on 02/Feb/18
find the values of Π_(n=2) ^∞ (1−(2/(n(n+1)))) .
findthevaluesofn=2(12n(n+1)).
Commented by abdo imad last updated on 03/Feb/18
Π_(n=2) ^∞  (1−(2/(n(n+1))))=lim_(n→+∞)  S_n   with   S_n = Π_(k=2) ^n  (1−(2/(k(k+1))))=Π_(k=2) ^n  ( ((k^2  +k−2)/(k(k+1)))) but  k^2  +k−2=k^2  −k+ 2k−2=k(k−1) +2(k−1)  =(k−1)(k+2)  S_n = Π_(k=2) ^n    ((k−1)/k) .((k+2)/(k+1))=Π_(k=1) ^(n−1)  (k/(k+1)) .Π_(k=3) ^(n+1)  ((k+1)/k)    =(1/2).(2/3)Π_(k=3) ^(n−1)  (k/(k+1)).Π_(k=3) ^(n−1)  ((k+1)/k).((n+1)/n).((n+2)/(n+1))  S_n = (1/3).((n+2)/n) ⇒lim_(n→+ ∞)  S_n =(1/3) so  Π_(n=2) ^∞  (1−(2/(n(n+1))))= (1/3) .
n=2(12n(n+1))=limn+SnwithSn=k=2n(12k(k+1))=k=2n(k2+k2k(k+1))butk2+k2=k2k+2k2=k(k1)+2(k1)=(k1)(k+2)Sn=k=2nk1k.k+2k+1=k=1n1kk+1.k=3n+1k+1k=12.23k=3n1kk+1.k=3n1k+1k.n+1n.n+2n+1Sn=13.n+2nlimn+Sn=13son=2(12n(n+1))=13.
Answered by iv@0uja last updated on 03/Feb/18
1−(2/(n(n+1)))=((n^2 +n−2)/(n(n+1)))                         =(((n−1)(n+2))/(n(n+1)))  Π_(n=2) ^m (((n−1)(n+2))/(n(n+1)))  =((1∙4)/(2∙3))×((2∙5)/(3∙4))×((3∙6)/(4∙5))×...×(((m−1)(m+2))/(m(m+1)))  =(1/3)×((m+2)/m)  lim_(m→∞) ((m+2)/m)=1  Π_(n=2) ^∞ (((n−1)(n+2))/(n(n+1)))=(1/3)×1=(1/3)
12n(n+1)=n2+n2n(n+1)=(n1)(n+2)n(n+1)mn=2(n1)(n+2)n(n+1)=1423×2534×3645××(m1)(m+2)m(m+1)=13×m+2mlimmm+2m=1n=2(n1)(n+2)n(n+1)=13×1=13

Leave a Reply

Your email address will not be published. Required fields are marked *