Question Number 47195 by MrW3 last updated on 06/Nov/18
$${Find}\:{the}\:{volume}\:{of}\:{the}\:{pyramid}\:{which} \\ $$$${is}\:{folded}\:{from}\:{a}\:{trangular}\:{paper}\:{with} \\ $$$${sides}\:\boldsymbol{{a}},\:\boldsymbol{{b}}\:{and}\:\boldsymbol{{c}}. \\ $$
Answered by MJS last updated on 06/Nov/18
$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{use}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{formula} \\ $$$$\mathrm{because}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bottom}\:\mathrm{triangle} \\ $$$$\mathrm{are}\:\frac{{a}}{\mathrm{2}},\:\frac{{b}}{\mathrm{2}},\:\frac{{c}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{skew}\:\mathrm{sides}\:\mathrm{have}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{values} \\ $$$$\mathrm{we}\:\mathrm{get}\:{V}=\frac{\sqrt{\mathrm{2}}}{\mathrm{96}}\sqrt{{a}^{\mathrm{4}} \left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+{b}^{\mathrm{4}} \left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+{c}^{\mathrm{4}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\left({a}^{\mathrm{6}} +{b}^{\mathrm{6}} +{c}^{\mathrm{6}} \right)}= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{96}}\sqrt{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\left(−{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)} \\ $$
Commented by MrW3 last updated on 06/Nov/18
$${thanks}\:{alot}\:{sir}! \\ $$
Commented by ajfour last updated on 06/Nov/18
$${Sir}\:{please}\:{elaborate}.. \\ $$
Commented by MJS last updated on 07/Nov/18
Commented by MJS last updated on 07/Nov/18
$${a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{the}\:\mathrm{basic}\:\mathrm{edges} \\ $$$${p}\:\mathrm{is}\:\mathrm{skew}\:\mathrm{to}\:{a} \\ $$$${q}\:\mathrm{is}\:\mathrm{skew}\:\mathrm{to}\:{b} \\ $$$${r}\:\mathrm{is}\:\mathrm{skew}\:\mathrm{to}\:{c} \\ $$$$\mathrm{Euler}'\mathrm{s}\:\mathrm{formula}\:\mathrm{gives}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{a}\:\mathrm{general} \\ $$$$\mathrm{tetrahedron} \\ $$$$\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:{V}=\frac{{Bh}}{\mathrm{3}}\:\mathrm{with}\:{B}\:\mathrm{being}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{basic}\:\mathrm{triangle}\:\Rightarrow\:{h}=\frac{\mathrm{3}{V}}{{B}}=\frac{\epsilon}{\mathrm{4}{B}}\:\mathrm{with}\:\epsilon\:\mathrm{being} \\ $$$$\mathrm{the}\:\mathrm{root}\:\mathrm{in}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{formula} \\ $$$${B}=\frac{\Delta}{\mathrm{4}}\:\mathrm{with}\:\Delta=\sqrt{\left({a}+{b}+{c}\right)\left({a}+{b}−{c}\right)\left({a}−{b}+{c}\right)\left(−{a}+{b}+{c}\right)} \\ $$$$\Rightarrow\:{h}=\frac{\epsilon}{\Delta} \\ $$