Question Number 144528 by imjagoll last updated on 26/Jun/21
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\: \\ $$$$\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{elliptic}\:\mathrm{paraboloid} \\ $$$$\mathrm{z}\:=\:\mathrm{4}−\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\mathrm{y}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{z}=\mathrm{0} \\ $$$$ \\ $$
Answered by EDWIN88 last updated on 03/Jul/21
$$\mathrm{vol}\:=\:\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\int_{\:\mathrm{0}} ^{\:\mathrm{2}\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }} \left(\mathrm{4}−\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\mathrm{y}^{\mathrm{2}} \right)\mathrm{dy}\:\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{4}\int_{\:\mathrm{0}} ^{\:\mathrm{2}} \left(\mathrm{4y}−\mathrm{x}^{\mathrm{2}} \mathrm{y}−\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\mathrm{y}^{\mathrm{3}} }{\mathrm{3}}\right)_{\mathrm{0}} ^{\mathrm{2}\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }} \mathrm{dx} \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{16}\pi\: \\ $$