Menu Close

find-the-volume-of-the-solid-generated-by-thr-revolution-of-the-curve-y-x-2-a-2-a-3-about-itd-asymptote-




Question Number 25745 by rita1608 last updated on 13/Dec/17
find the volume of the solid   generated by thr revolution of the  curve y(x^2 +a^2 )=a^3  about itd   asymptote.
$${find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\: \\ $$$${generated}\:{by}\:{thr}\:{revolution}\:{of}\:{the} \\ $$$${curve}\:{y}\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)={a}^{\mathrm{3}} \:{about}\:{itd}\: \\ $$$${asymptote}. \\ $$
Answered by jota@ last updated on 15/Dec/17
asintota y=0   V=2∫_0 ^∞ πy^2 dx  V=2πa^6 ∫_0 ^∞ (dx/((x^2 +a^2 )^2 )).   x=atanz   dx=asec^2 zdz   x^2 +a^2 =a^2 (tan^2 z+1)=a^2 sec^2 z  V=2πa^6 ∫_0 ^(𝛑/2) ((cos^2 zdz)/a^3 )    =2πa^3 ∫_0 ^(π/2) ((1+cos2z)/2)dz    =πa^3 (z+((sin2z)/2))∣_0 ^(π/2)     =((π^2 a^3 )/2).
$${asintota}\:{y}=\mathrm{0}\: \\ $$$${V}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \pi{y}^{\mathrm{2}} {dx} \\ $$$${V}=\mathrm{2}\pi{a}^{\mathrm{6}} \int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }. \\ $$$$\:{x}={atanz}\:\:\:{dx}={asec}^{\mathrm{2}} {zdz} \\ $$$$\:{x}^{\mathrm{2}} +{a}^{\mathrm{2}} ={a}^{\mathrm{2}} \left({tan}^{\mathrm{2}} {z}+\mathrm{1}\right)={a}^{\mathrm{2}} {sec}^{\mathrm{2}} {z} \\ $$$${V}=\mathrm{2}\pi{a}^{\mathrm{6}} \int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \frac{{cos}^{\mathrm{2}} {zdz}}{{a}^{\mathrm{3}} } \\ $$$$\:\:=\mathrm{2}\pi{a}^{\mathrm{3}} \int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{1}+{cos}\mathrm{2}{z}}{\mathrm{2}}{dz} \\ $$$$\:\:=\pi{a}^{\mathrm{3}} \left({z}+\frac{{sin}\mathrm{2}{z}}{\mathrm{2}}\right)\mid_{\mathrm{0}} ^{\pi/\mathrm{2}} \\ $$$$\:\:=\frac{\pi^{\mathrm{2}} {a}^{\mathrm{3}} }{\mathrm{2}}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *