Menu Close

Find-the-volume-of-the-solid-obtained-by-rotating-about-x-axis-of-the-curve-y-x-on-the-interval-0-2-Mastermind-




Question Number 170996 by Mastermind last updated on 06/Jun/22
Find the volume of the solid obtained  by rotating about x−axis of the curve  y=(√x) on the interval [0, 2].    Mastermind
$${Find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{obtained} \\ $$$${by}\:{rotating}\:{about}\:{x}−{axis}\:{of}\:{the}\:{curve} \\ $$$${y}=\sqrt{{x}}\:{on}\:{the}\:{interval}\:\left[\mathrm{0},\:\mathrm{2}\right]. \\ $$$$ \\ $$$${Mastermind} \\ $$
Answered by mr W last updated on 06/Jun/22
Method I:  V=2π×((2×2×(√2))/3)×((3(√2))/8)=2π    Method II:  V=π∫_0 ^2 y^2 dx=π∫_0 ^2 xdx=(π/2)(2^2 −0^2 )=2π
$${Method}\:{I}: \\ $$$${V}=\mathrm{2}\pi×\frac{\mathrm{2}×\mathrm{2}×\sqrt{\mathrm{2}}}{\mathrm{3}}×\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{8}}=\mathrm{2}\pi \\ $$$$ \\ $$$${Method}\:{II}: \\ $$$${V}=\pi\int_{\mathrm{0}} ^{\mathrm{2}} {y}^{\mathrm{2}} {dx}=\pi\int_{\mathrm{0}} ^{\mathrm{2}} {xdx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{2}^{\mathrm{2}} −\mathrm{0}^{\mathrm{2}} \right)=\mathrm{2}\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *