Menu Close

Find-the-volume-that-remains-after-the-hole-of-radius-1-bored-through-the-center-of-a-solid-sphere-of-radius-3-a-18pi-b-28-3-pi-c-36pi-d-56pi-3-




Question Number 124666 by benjo_mathlover last updated on 05/Dec/20
 Find the volume that remains  after the hole of radius 1 bored   through the center of a solid  sphere of radius 3.  (a) 18π    (b) ((28)/3)π    (c) 36π    (d) ((56π)/3)
Findthevolumethatremainsaftertheholeofradius1boredthroughthecenterofasolidsphereofradius3.(a)18π(b)283π(c)36π(d)56π3
Commented by ajfour last updated on 05/Dec/20
Commented by ajfour last updated on 05/Dec/20
cap volume V.  V=∫_h ^( R) πr^2 dy     r=Rsin θ   , y=Rcos θ      = ∫_0 ^( α) π(R^2 sin^2 θ)Rsin θdθ  sin α=(1/3) ,  cos α=((2(√2))/3)    = πR^3 ∫_((2(√2))/3) ^(  1) (1−t^2 )dt     ;  t=cos θ    = πR^3 (t−(t^3 /3))∣_((2(√2))/3) ^1      =27π[(2/3)−(((2(√2))/3)−((16(√2))/(81)))]     =27π[(2/3)−((38(√2))/(81))]   remaining volume    = (4/3)π(27)−2π(1)^2 (2(√2))−2V   =36π−4(√2)π−36π+((76(√2))/3)π   V_(remaining) =((64(√2)π)/3) .
capvolumeV.V=hRπr2dyr=Rsinθ,y=Rcosθ=0απ(R2sin2θ)Rsinθdθsinα=13,cosα=223=πR32231(1t2)dt;t=cosθ=πR3(tt33)2231=27π[23(22316281)]=27π[2338281]remainingvolume=43π(27)2π(1)2(22)2V=36π42π36π+7623πVremaining=642π3.
Commented by benjo_mathlover last updated on 05/Dec/20
nothing available choice answer  is correct?
nothingavailablechoiceansweriscorrect?
Commented by mr W last updated on 05/Dec/20
yes. all answers given are wrong.  i got a formula for the remaining  volume which is  V_(remain) =((4π(R^2 −r^2 )^(3/2) )/3)
yes.allanswersgivenarewrong.igotaformulafortheremainingvolumewhichisVremain=4π(R2r2)323
Answered by mr W last updated on 05/Dec/20
Method I  R=radius of sphere  r=radius of hole  h=(√(R^2 −r^2 ))=(√(3^2 −1^2 ))=2(√2)  volume of sphere  V=((4πR^3 )/3)  volume of cylinder with height 2h  V_1 =2hπr^2   volume of each cap  V_2 =π(Δh)^2 (R−((Δh)/3)) with Δh=R−h    volume of remaining sphere part  V_(Remain) =V−V_1 −2V_2   =((4πR^3 )/3)−2πhr^2 −2π(R−h)^2 (((2R+h))/3)  =((4π3^3 )/3)−2π2(√2)×1^2 −2π(3−2(√2))^2 (((2×3+2(√2)))/3)  =((108−12(√2)−4×27+4×19(√2))/3)π  =((64(√2)π)/3)
MethodIR=radiusofspherer=radiusofholeh=R2r2=3212=22volumeofsphereV=4πR33volumeofcylinderwithheight2hV1=2hπr2volumeofeachcapV2=π(Δh)2(RΔh3)withΔh=RhvolumeofremainingspherepartVRemain=VV12V2=4πR332πhr22π(Rh)2(2R+h)3=4π3332π22×122π(322)2(2×3+22)3=1081224×27+4×1923π=642π3
Commented by mr W last updated on 05/Dec/20
Commented by mr W last updated on 05/Dec/20
Method II  r≤x≤R  h(x)=(√(R^2 −x^2 ))  dV=2h(x)2πx=4πx(√(R^2 −x^2 ))  V_(Remain) =∫_r ^R 4πx(√(R^2 −x^2 ))dx  =−2π∫_r ^R (√(R^2 −x^2 ))d(R^2 −x^2 )  =((4π)/3)[(R^2 −x^2 )^(3/2) ]_R ^r   =((4π(R^2 −r^2 )^(3/2) )/3)  =((4π(3^2 −1^2 )^(3/2) )/3)  =((64(√2)π)/3)
MethodIIrxRh(x)=R2x2dV=2h(x)2πx=4πxR2x2VRemain=rR4πxR2x2dx=2πrRR2x2d(R2x2)=4π3[(R2x2)32]Rr=4π(R2r2)323=4π(3212)323=642π3
Commented by benjo_mathlover last updated on 05/Dec/20
typo sir. ((4π×8(√8))/3) = ((64π(√2))/3)
typosir.4π×883=64π23

Leave a Reply

Your email address will not be published. Required fields are marked *