Menu Close

Find-the-x-1-x-2-x-1-dx-




Question Number 32139 by Cheyboy last updated on 20/Mar/18
Find the  ∫ ((x+1)/(x^2 +x+1))dx
Findthex+1x2+x+1dx
Commented by mrW2 last updated on 20/Mar/18
∫ ((x+1)/(x^2 +x+1))dx  =(1/2)∫ ((2x+1+1)/(x^2 +x+1))dx  =(1/2)[∫ ((2x+1)/(x^2 +x+1))dx+∫(1/(x^2 +x+1))dx]  =(1/2)[∫ (1/(x^2 +x+1))d(x^2 +x+1)+∫(1/(x^2 +x+1))dx]  =(1/2)[ln (x^2 +x+1)+∫(1/((x+(1/2))^2 +(((√3)/2))^2 ))d(x+(1/2))]  =(1/2)[ln (x^2 +x+1)+(2/( (√3))) tan^(−1) ((2x+1)/( (√3)))]+C  =(1/2)ln (x^2 +x+1)+(1/( (√3))) tan^(−1) ((2x+1)/( (√3)))+C
x+1x2+x+1dx=122x+1+1x2+x+1dx=12[2x+1x2+x+1dx+1x2+x+1dx]=12[1x2+x+1d(x2+x+1)+1x2+x+1dx]=12[ln(x2+x+1)+1(x+12)2+(32)2d(x+12)]=12[ln(x2+x+1)+23tan12x+13]+C=12ln(x2+x+1)+13tan12x+13+C
Commented by Cheyboy last updated on 20/Mar/18
Sir plzz can u explain this part  ∫(1/(x^2 +x+1))d(x^2 +x+1)
Sirplzzcanuexplainthispart1x2+x+1d(x2+x+1)
Commented by Tinkutara last updated on 20/Mar/18
(d/dx)(x^2 +x+1)=2x+1  d(x^2 +x+1)=(2x+1)dx  (2x+1)dx is replaced by d(x^2 +x+1).
ddx(x2+x+1)=2x+1d(x2+x+1)=(2x+1)dx(2x+1)dxisreplacedbyd(x2+x+1).
Commented by Cheyboy last updated on 20/Mar/18
Ooh!! i have seen it Thank you for   the clearification.
Ooh!!ihaveseenitThankyoufortheclearification.

Leave a Reply

Your email address will not be published. Required fields are marked *