Menu Close

find-thevalue-of-0-dx-1-x-6-by-using-the-value-of-dx-x-z-with-z-C-and-Im-z-0-




Question Number 40007 by math khazana by abdo last updated on 15/Jul/18
find thevalue of   ∫_0 ^∞     (dx/(1 +x^6 ))  by using the  value of  ∫_(−∞) ^(+∞)   (dx/(x−z)) with z ∈ C and Im(z)≠0
findthevalueof0dx1+x6byusingthevalueof+dxxzwithzCandIm(z)0
Commented by prof Abdo imad last updated on 16/Jul/18
let I = ∫_0 ^∞     (dx/(1+x^6 ))  2I = ∫_(−∞) ^(+∞)    (dx/(1+x^6 )) let drcompose inside C(x)  F(x)= (1/(x^6 +1))  poles of F?  x^6  =−1  ⇒ x_k = e^(i((2k+1)π)/6))   with k∈[[0,5]]  x_0 = e^((iπ)/6)   , x_1 = e^(i(π/2))    , x_2 = e^((i5π)/6)  = −e^(−((iπ)/6))   x_3 = e^(i((7π)/6))  =−e^((iπ)/6)  , x_4 =e^((i9π)/6)  =e^((i3π)/2)   , x_5 = e^((i11π)/6)  =e^(−((iπ)/6))   we have λ_i = (1/(6x_i ^5 )) =−(1/6) x_i  ⇒  F(x)=−(1/6){  (x_0 /(x−x_0 )) +(x_1 /(x−x_1 )) +(x_2 /(x−x_2 )) +(x_3 /(x−x_3 ))  + (x_4 /(x−x_4 )) +(x_5 /(x−x_5 ))} ⇒  ∫_(−∞) ^(+∞)  F(x)dx =−(1/6){ x_0 ∫_(−∞) ^(+∞)  (dx/(x−x_0 )) +x_1  ∫_(−∞) ^(+∞)  (dx/(x−x_1 ))  +x_2  ∫_(−∞) ^(+∞)   (dx/(x−x_2 )) + x_3   ∫_(−∞) ^(+∞)   (dx/(x−x_3 )) + x_4   ∫_(−∞) ^(+∞)  (dx/(x−x_4 ))  +x_5  ∫_(−∞) ^(+∞)    (dx/(x−x_5 ))} but we have proved that  ∫_(−∞) ^(+∞)    (dx/(x−z))  =iπ  if Im(z)>0 and −iπ if Im(z)<0  ∫_(−∞) ^(+∞)  F(x)dx =−(1/6){x_0 (iπ) +x_1 (iπ) +x_2 (iπ)  +x_3 (−iπ)+x_4 (−iπ) +x_5 (−iπ)}  =−((iπ)/6){ x_0  +x_1  +x_2  −x_3  −x_4 −x_5 }  =−((iπ)/6){ e^((iπ)/6)  + i  −e^(−((iπ)/6))  +e^((iπ)/6)  −e^((i3π)/2)  −e^(−((iπ)/6)) }  =−((iπ)/6){  2i  +2(e^((iπ)/6)  −e^(−((iπ)/6)) )}  =(π/3) −((iπ)/3) 2i (1/2) =(π/3) +(π/3) =((2π)/3)  2I =((2π)/3) ⇒ I =(π/3) .
letI=0dx1+x62I=+dx1+x6letdrcomposeinsideC(x)F(x)=1x6+1polesofF?x6=1xk=ei2k+1)π6withk[[0,5]]x0=eiπ6,x1=eiπ2,x2=ei5π6=eiπ6x3=ei7π6=eiπ6,x4=ei9π6=ei3π2,x5=ei11π6=eiπ6wehaveλi=16xi5=16xiF(x)=16{x0xx0+x1xx1+x2xx2+x3xx3+x4xx4+x5xx5}+F(x)dx=16{x0+dxxx0+x1+dxxx1+x2+dxxx2+x3+dxxx3+x4+dxxx4+x5+dxxx5}butwehaveprovedthat+dxxz=iπifIm(z)>0andiπifIm(z)<0+F(x)dx=16{x0(iπ)+x1(iπ)+x2(iπ)+x3(iπ)+x4(iπ)+x5(iπ)}=iπ6{x0+x1+x2x3x4x5}=iπ6{eiπ6+ieiπ6+eiπ6ei3π2eiπ6}=iπ6{2i+2(eiπ6eiπ6)}=π3iπ32i12=π3+π3=2π32I=2π3I=π3.

Leave a Reply

Your email address will not be published. Required fields are marked *