find-thevalue-of-0-dx-1-x-6-by-using-the-value-of-dx-x-z-with-z-C-and-Im-z-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40007 by math khazana by abdo last updated on 15/Jul/18 findthevalueof∫0∞dx1+x6byusingthevalueof∫−∞+∞dxx−zwithz∈CandIm(z)≠0 Commented by prof Abdo imad last updated on 16/Jul/18 letI=∫0∞dx1+x62I=∫−∞+∞dx1+x6letdrcomposeinsideC(x)F(x)=1x6+1polesofF?x6=−1⇒xk=ei2k+1)π6withk∈[[0,5]]x0=eiπ6,x1=eiπ2,x2=ei5π6=−e−iπ6x3=ei7π6=−eiπ6,x4=ei9π6=ei3π2,x5=ei11π6=e−iπ6wehaveλi=16xi5=−16xi⇒F(x)=−16{x0x−x0+x1x−x1+x2x−x2+x3x−x3+x4x−x4+x5x−x5}⇒∫−∞+∞F(x)dx=−16{x0∫−∞+∞dxx−x0+x1∫−∞+∞dxx−x1+x2∫−∞+∞dxx−x2+x3∫−∞+∞dxx−x3+x4∫−∞+∞dxx−x4+x5∫−∞+∞dxx−x5}butwehaveprovedthat∫−∞+∞dxx−z=iπifIm(z)>0and−iπifIm(z)<0∫−∞+∞F(x)dx=−16{x0(iπ)+x1(iπ)+x2(iπ)+x3(−iπ)+x4(−iπ)+x5(−iπ)}=−iπ6{x0+x1+x2−x3−x4−x5}=−iπ6{eiπ6+i−e−iπ6+eiπ6−ei3π2−e−iπ6}=−iπ6{2i+2(eiπ6−e−iπ6)}=π3−iπ32i12=π3+π3=2π32I=2π3⇒I=π3. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-1-1-1-x-1-1-1-x-x-Next Next post: calculate-0-sin-x-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.