Menu Close

Find-two-possible-values-of-p-if-the-lines-px-y-0-and-3x-y-1-0-intersect-at-45-




Question Number 151513 by pete last updated on 21/Aug/21
Find two possible values of p if the lines  px−y=0 and 3x+y+1=0 intersect at 45°
$$\mathrm{Find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{p}\:\mathrm{if}\:\mathrm{the}\:\mathrm{lines} \\ $$$${px}−{y}=\mathrm{0}\:\mathrm{and}\:\mathrm{3}{x}+{y}+\mathrm{1}=\mathrm{0}\:\mathrm{intersect}\:\mathrm{at}\:\mathrm{45}° \\ $$
Answered by Olaf_Thorendsen last updated on 21/Aug/21
Δ_1  : px−y = 0  Δ_2  : 3x+y+1 = 0  u_Δ_1  ^→  =  ((1),(p) )  u_Δ_2  ^→  =  ((1),((−3)) )  u_Δ_1  ^→ •u_Δ_2  ^→  = ∣∣u_Δ_1  ^→ ∣∣×∣∣u_Δ_2  ^→ ∣∣×cos(u_Δ_1  ^→ ,u_Δ_2  ^→ ^(�) )  (1)(1)+p(−3) = (√(1+p^2 ))×(√(10))×(1/( (√2)))  (√(1+p^2 )) = (1/( (√5)))(1−3p)  ⇒ 1+p^2  = (1/5)(9p^2 −6p+1)  2p^2 −3p−2 = 0  2(p−2)(p+(1/2)) = 0  p = −(1/2) or p = 2
$$\Delta_{\mathrm{1}} \::\:{px}−{y}\:=\:\mathrm{0} \\ $$$$\Delta_{\mathrm{2}} \::\:\mathrm{3}{x}+{y}+\mathrm{1}\:=\:\mathrm{0} \\ $$$$\overset{\rightarrow} {{u}}_{\Delta_{\mathrm{1}} } \:=\:\begin{pmatrix}{\mathrm{1}}\\{{p}}\end{pmatrix} \\ $$$$\overset{\rightarrow} {{u}}_{\Delta_{\mathrm{2}} } \:=\:\begin{pmatrix}{\mathrm{1}}\\{−\mathrm{3}}\end{pmatrix} \\ $$$$\overset{\rightarrow} {{u}}_{\Delta_{\mathrm{1}} } \bullet\overset{\rightarrow} {{u}}_{\Delta_{\mathrm{2}} } \:=\:\mid\mid\overset{\rightarrow} {{u}}_{\Delta_{\mathrm{1}} } \mid\mid×\mid\mid\overset{\rightarrow} {{u}}_{\Delta_{\mathrm{2}} } \mid\mid×\mathrm{cos}\left(\widehat {\overset{\rightarrow} {{u}}_{\Delta_{\mathrm{1}} } ,\overset{\rightarrow} {{u}}_{\Delta_{\mathrm{2}} } }\right) \\ $$$$\left(\mathrm{1}\right)\left(\mathrm{1}\right)+{p}\left(−\mathrm{3}\right)\:=\:\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }×\sqrt{\mathrm{10}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\mathrm{1}−\mathrm{3}{p}\right) \\ $$$$\Rightarrow\:\mathrm{1}+{p}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{5}}\left(\mathrm{9}{p}^{\mathrm{2}} −\mathrm{6}{p}+\mathrm{1}\right) \\ $$$$\mathrm{2}{p}^{\mathrm{2}} −\mathrm{3}{p}−\mathrm{2}\:=\:\mathrm{0} \\ $$$$\mathrm{2}\left({p}−\mathrm{2}\right)\left({p}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\mathrm{0} \\ $$$${p}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{or}\:{p}\:=\:\mathrm{2} \\ $$
Commented by pete last updated on 21/Aug/21
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by nadovic last updated on 21/Aug/21
l_1 :    px − y = 0  gradient, m_1  = p  l_2 :    3x + y + 1 = 0  gradient, m_2  = −3   ⇒     ∣((m_1  − m_2 )/(1 + m_1 m_2 ))∣  =  tan 45°             ((p − (−3))/(1 + p(−3)))  = ±1            p + 3 = ±1 ∓ 3p                   4p = −2                    p = −(1/2)            OR             −2p = −4                    p = 2
$${l}_{\mathrm{1}} :\:\:\:\:{px}\:−\:{y}\:=\:\mathrm{0} \\ $$$${gradient},\:{m}_{\mathrm{1}} \:=\:{p} \\ $$$${l}_{\mathrm{2}} :\:\:\:\:\mathrm{3}{x}\:+\:{y}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$${gradient},\:{m}_{\mathrm{2}} \:=\:−\mathrm{3} \\ $$$$\:\Rightarrow\:\:\:\:\:\mid\frac{{m}_{\mathrm{1}} \:−\:{m}_{\mathrm{2}} }{\mathrm{1}\:+\:{m}_{\mathrm{1}} {m}_{\mathrm{2}} }\mid\:\:=\:\:\mathrm{tan}\:\mathrm{45}° \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{{p}\:−\:\left(−\mathrm{3}\right)}{\mathrm{1}\:+\:{p}\left(−\mathrm{3}\right)}\:\:=\:\pm\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:{p}\:+\:\mathrm{3}\:=\:\pm\mathrm{1}\:\mp\:\mathrm{3}{p}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}{p}\:=\:−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{p}\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{OR}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}{p}\:=\:−\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{p}\:=\:\mathrm{2} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\: \\ $$
Commented by bramlexs22 last updated on 21/Aug/21
it should be tan 45°=∣((m_1 −m_2 )/(1+m_1 m_2 ))∣
$$\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{tan}\:\mathrm{45}°=\mid\frac{\mathrm{m}_{\mathrm{1}} −\mathrm{m}_{\mathrm{2}} }{\mathrm{1}+\mathrm{m}_{\mathrm{1}} \mathrm{m}_{\mathrm{2}} }\mid \\ $$
Commented by nadovic last updated on 21/Aug/21
Alright Sir. Thank you!
$${Alright}\:{Sir}.\:{Thank}\:{you}! \\ $$
Commented by pete last updated on 21/Aug/21
thanks very much sir
$$\mathrm{thanks}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *