Menu Close

find-tylor-series-of-f-z-logz-about-z-o-1-i-




Question Number 148636 by tabata last updated on 29/Jul/21
find tylor series of f(z)=logz   about z_o =−1+i
findtylorseriesoff(z)=logzaboutzo=1+i
Commented by tabata last updated on 29/Jul/21
????
????
Answered by mathmax by abdo last updated on 30/Jul/21
f(z)=Σ_(n=0) ^∞  ((f^((n)) (z_0 ))/(n!))(z−z_0 )^n   f(z)=lnz ⇒f^′ (z)=(1/z) ⇒f^((n)) (z)=(((−1)^(n−1) (n−1)!)/z^n ) ⇒  f(z)=f(z_0 )+Σ_(n=1) ^∞  (((−1)^(n−1) (n−1)!)/(n!z_0 ^n ))(z−z_0 )^n   =log(−1+i)+Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(−1+i)^n ))(z+1−i)^n   =iπ+log(e^(−((iπ)/4)) )−Σ_(n=1) ^∞  (1/n)e^((inπ)/4) (z+1−i)^n   logz=((3iπ)/4)−Σ_(n=1) ^∞  (1/n)e^((inπ)/4) (z+1−i)^n
f(z)=n=0f(n)(z0)n!(zz0)nf(z)=lnzf(z)=1zf(n)(z)=(1)n1(n1)!znf(z)=f(z0)+n=1(1)n1(n1)!n!z0n(zz0)n=log(1+i)+n=1(1)n1n(1+i)n(z+1i)n=iπ+log(eiπ4)n=11neinπ4(z+1i)nlogz=3iπ4n=11neinπ4(z+1i)n

Leave a Reply

Your email address will not be published. Required fields are marked *