find-U-n-0-1-x-n-arctan-x-dx-with-n-integr-nstural- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 124919 by mathmax by abdo last updated on 07/Dec/20 findUn=∫01xnarctan(x)dxwithnintegrnstural Commented by mindispower last updated on 07/Dec/20 bypart=[xn+1n+1tan−1(x)]01−1n+1∫01xn+11+x2dx=π4(n+1)−1n+1∫01∑k⩾0(−1)kxn+1+2kdx=π4(n+1)−1(n+1)∑k⩾0(−1)kn+2+2k=π4(n+1)−1n+1∑k⩾0(n+2+2(2k+1))−(n+2+4k)(n+2+2.2k)(n+2+2(2k+1)=π4(n+1)−1n+1∑k⩾12(n−2+4k)(n+4k)=π4(n+1)−18(n+1)∑k⩾11(n−14+k)(n4+k)=π4(n+1)−18(n+1).Ψ(n4)−Ψ(n−14)n4−n−14=π4(n+1)−12(n+1)(Ψ(n4)−Ψ(n−14)),n⩾1n=0wegetπ4−∫01x1+x2=π4−ln(2) Commented by Bird last updated on 07/Dec/20 thankssir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: xdx-sin-x-Next Next post: cos-1-5-x-sin-1-5-x-sinx-cosx-dx-cos-3-2-x-sin-1-2-x-cos-1-2-x-dx-sin-3-2-x-sin-1-2-x-cos-1-2-x-dx-cosx-sin-1-2-x-dx-sinx-cos-1-2-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.