Menu Close

find-U-n-0-1-x-n-arctan-x-dx-with-n-integr-nstural-




Question Number 124919 by mathmax by abdo last updated on 07/Dec/20
find U_n =∫_0 ^1 x^n arctan(x)dx with n integr nstural
findUn=01xnarctan(x)dxwithnintegrnstural
Commented by mindispower last updated on 07/Dec/20
by part=[(x^(n+1) /(n+1))tan^(−1) (x)]_0 ^1 −(1/(n+1))∫_0 ^1 (x^(n+1) /(1+x^2 ))dx  =(π/(4(n+1)))−(1/(n+1))∫_0 ^1 Σ_(k≥0) (−1)^k x^(n+1+2k) dx  =(π/(4(n+1)))−(1/((n+1)))Σ_(k≥0) (((−1)^k )/(n+2+2k))  =(π/(4(n+1)))−(1/(n+1))Σ_(k≥0) (((n+2+2(2k+1))−(n+2+4k))/((n+2+2.2k)(n+2+2(2k+1)))  =(π/(4(n+1)))−(1/(n+1))Σ_(k≥1) (2/((n−2+4k)(n+4k)))  =(π/(4(n+1)))−(1/(8(n+1)))Σ_(k≥1) (1/((((n−1)/4)+k)((n/4)+k)))  =(π/(4(n+1)))−(1/(8(n+1))).((Ψ((n/4))−Ψ(((n−1)/4)))/((n/4)−((n−1)/4)))  =(π/(4(n+1)))−(1/(2(n+1)))(Ψ((n/4))−Ψ(((n−1)/4))),n≥1  n=0  we get (π/4)−∫_0 ^1 (x/(1+x^2 ))=(π/4)−ln((√2))
bypart=[xn+1n+1tan1(x)]011n+101xn+11+x2dx=π4(n+1)1n+101k0(1)kxn+1+2kdx=π4(n+1)1(n+1)k0(1)kn+2+2k=π4(n+1)1n+1k0(n+2+2(2k+1))(n+2+4k)(n+2+2.2k)(n+2+2(2k+1)=π4(n+1)1n+1k12(n2+4k)(n+4k)=π4(n+1)18(n+1)k11(n14+k)(n4+k)=π4(n+1)18(n+1).Ψ(n4)Ψ(n14)n4n14=π4(n+1)12(n+1)(Ψ(n4)Ψ(n14)),n1n=0wegetπ401x1+x2=π4ln(2)
Commented by Bird last updated on 07/Dec/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *