Menu Close

find-u-n-0-e-n-x-cos-nx-dx-and-v-n-0-e-n-x-sin-nx-dx-2-find-nature-of-u-n-v-n-and-u-n-v-n-




Question Number 45976 by maxmathsup by imad last updated on 19/Oct/18
find u_n = ∫_0 ^∞  e^(−n[x]) cos(nx)dx and v_n =∫_0 ^∞  e^(n[x]) sin(nx)dx  2) find nature of Σ u_n v_n   and Σ (u_n /v_n )
$${find}\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{n}\left[{x}\right]} {cos}\left({nx}\right){dx}\:{and}\:{v}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{{n}\left[{x}\right]} {sin}\left({nx}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} {v}_{{n}} \:\:{and}\:\Sigma\:\frac{{u}_{{n}} }{{v}_{{n}} } \\ $$
Commented by maxmathsup by imad last updated on 20/Oct/18
we have u_n  +iv_n  = ∫_0 ^∞   e^(−n[x])  e^(inx) dx = ∫_0 ^∞   e^(−n[x] +inx) dx  = Σ_(k=0) ^∞   ∫_k ^(k+1)    e^(−kn +inx) dx  =Σ_(k=0) ^∞  e^(−nk)   ∫_k ^(k+1)   e^(inx) dx =Σ_(k=0) ^∞   e^(−nk)  (1/(in))[e^(inx) ]_k ^(k+1)   =(1/(in)) Σ_(k=0) ^∞  e^(−nk)  { e^(in(k+1))  −e^(ink) }  =(1/(in)) e^(in)   Σ_(k=0) ^∞  e^(−nk+ink)   −(1/(in)) Σ_(k=0) ^∞  e^(−nk+ink)   =(1/(in)) e^(in)   Σ_(k=0) ^∞   (e^(−n+in) )^k  −(1/(in)) Σ_(k=0) ^∞  (e^(−n+in) )^k   =(1/(in)) e^(in) (1/(1−e^(−n+in) )) −(1/(in)) (1/(1−e^(−n+in) )) =((e^(in) −1)/(in))  (1/(1−e^(−n+in) ))  =((cos(n)+isin(n)−1)/(in)) (1/(1−e^(−n) (cosn +isin(n))))  =((−i(cos(n)+isin(n)−1))/n) (1/(1−e^(−n) cos(n)−ie^(−n) sin(n)))  =((sin(n)−i cos(n) +i)/n) ((1−e^(−n) cos(n)+i e^(−n)  sin(n))/((1−e^(−n) cos(n))^2  +e^(−2n)  sin^2 (n)))  af ter  we separate Re (..) and Im(...)...
$${we}\:{have}\:{u}_{{n}} \:+{iv}_{{n}} \:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{n}\left[{x}\right]} \:{e}^{{inx}} {dx}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{n}\left[{x}\right]\:+{inx}} {dx} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\:{e}^{−{kn}\:+{inx}} {dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{nk}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:{e}^{{inx}} {dx}\:=\sum_{{k}=\mathrm{0}} ^{\infty} \:\:{e}^{−{nk}} \:\frac{\mathrm{1}}{{in}}\left[{e}^{{inx}} \right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{{in}}\:\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{nk}} \:\left\{\:{e}^{{in}\left({k}+\mathrm{1}\right)} \:−{e}^{{ink}} \right\} \\ $$$$=\frac{\mathrm{1}}{{in}}\:{e}^{{in}} \:\:\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{nk}+{ink}} \:\:−\frac{\mathrm{1}}{{in}}\:\sum_{{k}=\mathrm{0}} ^{\infty} \:{e}^{−{nk}+{ink}} \\ $$$$=\frac{\mathrm{1}}{{in}}\:{e}^{{in}} \:\:\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\left({e}^{−{n}+{in}} \right)^{{k}} \:−\frac{\mathrm{1}}{{in}}\:\sum_{{k}=\mathrm{0}} ^{\infty} \:\left({e}^{−{n}+{in}} \right)^{{k}} \\ $$$$=\frac{\mathrm{1}}{{in}}\:{e}^{{in}} \frac{\mathrm{1}}{\mathrm{1}−{e}^{−{n}+{in}} }\:−\frac{\mathrm{1}}{{in}}\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{n}+{in}} }\:=\frac{{e}^{{in}} −\mathrm{1}}{{in}}\:\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{n}+{in}} } \\ $$$$=\frac{{cos}\left({n}\right)+{isin}\left({n}\right)−\mathrm{1}}{{in}}\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{n}} \left({cosn}\:+{isin}\left({n}\right)\right)} \\ $$$$=\frac{−{i}\left({cos}\left({n}\right)+{isin}\left({n}\right)−\mathrm{1}\right)}{{n}}\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{n}} {cos}\left({n}\right)−{ie}^{−{n}} {sin}\left({n}\right)} \\ $$$$=\frac{{sin}\left({n}\right)−{i}\:{cos}\left({n}\right)\:+{i}}{{n}}\:\frac{\mathrm{1}−{e}^{−{n}} {cos}\left({n}\right)+{i}\:{e}^{−{n}} \:{sin}\left({n}\right)}{\left(\mathrm{1}−{e}^{−{n}} {cos}\left({n}\right)\right)^{\mathrm{2}} \:+{e}^{−\mathrm{2}{n}} \:{sin}^{\mathrm{2}} \left({n}\right)} \\ $$$${af}\:{ter}\:\:{we}\:{separate}\:{Re}\:\left(..\right)\:{and}\:{Im}\left(…\right)… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *