Menu Close

find-u-n-0-e-n-x-cos-nx-dx-and-v-n-0-e-n-x-sin-nx-dx-2-find-nature-of-u-n-v-n-and-u-n-v-n-




Question Number 45976 by maxmathsup by imad last updated on 19/Oct/18
find u_n = ∫_0 ^∞  e^(−n[x]) cos(nx)dx and v_n =∫_0 ^∞  e^(n[x]) sin(nx)dx  2) find nature of Σ u_n v_n   and Σ (u_n /v_n )
findun=0en[x]cos(nx)dxandvn=0en[x]sin(nx)dx2)findnatureofΣunvnandΣunvn
Commented by maxmathsup by imad last updated on 20/Oct/18
we have u_n  +iv_n  = ∫_0 ^∞   e^(−n[x])  e^(inx) dx = ∫_0 ^∞   e^(−n[x] +inx) dx  = Σ_(k=0) ^∞   ∫_k ^(k+1)    e^(−kn +inx) dx  =Σ_(k=0) ^∞  e^(−nk)   ∫_k ^(k+1)   e^(inx) dx =Σ_(k=0) ^∞   e^(−nk)  (1/(in))[e^(inx) ]_k ^(k+1)   =(1/(in)) Σ_(k=0) ^∞  e^(−nk)  { e^(in(k+1))  −e^(ink) }  =(1/(in)) e^(in)   Σ_(k=0) ^∞  e^(−nk+ink)   −(1/(in)) Σ_(k=0) ^∞  e^(−nk+ink)   =(1/(in)) e^(in)   Σ_(k=0) ^∞   (e^(−n+in) )^k  −(1/(in)) Σ_(k=0) ^∞  (e^(−n+in) )^k   =(1/(in)) e^(in) (1/(1−e^(−n+in) )) −(1/(in)) (1/(1−e^(−n+in) )) =((e^(in) −1)/(in))  (1/(1−e^(−n+in) ))  =((cos(n)+isin(n)−1)/(in)) (1/(1−e^(−n) (cosn +isin(n))))  =((−i(cos(n)+isin(n)−1))/n) (1/(1−e^(−n) cos(n)−ie^(−n) sin(n)))  =((sin(n)−i cos(n) +i)/n) ((1−e^(−n) cos(n)+i e^(−n)  sin(n))/((1−e^(−n) cos(n))^2  +e^(−2n)  sin^2 (n)))  af ter  we separate Re (..) and Im(...)...
wehaveun+ivn=0en[x]einxdx=0en[x]+inxdx=k=0kk+1ekn+inxdx=k=0enkkk+1einxdx=k=0enk1in[einx]kk+1=1ink=0enk{ein(k+1)eink}=1ineink=0enk+ink1ink=0enk+ink=1ineink=0(en+in)k1ink=0(en+in)k=1inein11en+in1in11en+in=ein1in11en+in=cos(n)+isin(n)1in11en(cosn+isin(n))=i(cos(n)+isin(n)1)n11encos(n)iensin(n)=sin(n)icos(n)+in1encos(n)+iensin(n)(1encos(n))2+e2nsin2(n)afterweseparateRe(..)andIm()

Leave a Reply

Your email address will not be published. Required fields are marked *