Question Number 162043 by HongKing last updated on 25/Dec/21
$$\mathrm{Find}\:\mathrm{valu}\:\mathrm{of}\:\:\boldsymbol{\mathrm{x}}\:\:\mathrm{if}\:\:\mathrm{x}\in\mathbb{R}\: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{9x}\:-\:\mathrm{1}}\:+\:\sqrt{\mathrm{8x}\:-\:\mathrm{1}}\:+\:\sqrt[{\mathrm{4}}]{\mathrm{8x}\:+\:\mathrm{15}}\:-\:\frac{\mathrm{5}}{\mathrm{2}}\:=\:\mathrm{0} \\ $$
Commented by mr W last updated on 25/Dec/21
$${with}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\sqrt[{\mathrm{3}}]{\frac{\mathrm{9}}{\mathrm{8}}−\mathrm{1}}+\sqrt{\frac{\mathrm{8}}{\mathrm{8}}−\mathrm{1}}+\sqrt[{\mathrm{4}}]{\frac{\mathrm{8}}{\mathrm{8}}+\mathrm{15}}−\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{8}}}+\sqrt{\mathrm{0}}+\sqrt[{\mathrm{4}}]{\mathrm{16}}−\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{0}+\mathrm{2}−\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$=\mathrm{0}\:\checkmark \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{8}}\:{is}\:{one}\:{and}\:{the}\:{only}\:{one}\:{root}, \\ $$$${since}\:{f}\left({x}\right)\:{is}\:{strictly}\:{increasing}. \\ $$
Commented by HongKing last updated on 26/Dec/21
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{cool} \\ $$
Answered by aleks041103 last updated on 25/Dec/21
$${f}\left({x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{9}{x}−\mathrm{1}}+\sqrt{\mathrm{8}{x}−\mathrm{1}}+\sqrt[{\mathrm{4}}]{\mathrm{8}{x}+\mathrm{15}} \\ $$$${by}\:{observation}\:{f}\left({x}\right)\:{is}\:{monotonously}\:{rising} \\ $$$$\Rightarrow{there}\:{is}\:{at}\:{most}\:\mathrm{1}\:{solution}\:{to}\:{f}\left({x}\right)=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{\mathrm{72}{x}−\mathrm{8}}+\sqrt{\mathrm{32}{x}−\mathrm{4}}+\sqrt[{\mathrm{4}}]{\mathrm{128}{x}+\mathrm{240}}=\mathrm{5} \\ $$$${for}\:{f}\left({x}\right)\in\mathbb{R}\Rightarrow \\ $$$$\mathrm{32}{x}−\mathrm{4}\geqslant\mathrm{0}\Rightarrow{x}\geqslant\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{128}{x}+\mathrm{240}\geqslant\mathrm{0}\Rightarrow{x}\geqslant−\frac{\mathrm{240}}{\mathrm{128}} \\ $$$$\Rightarrow{x}\geqslant\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${try}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{\mathrm{72}{x}−\mathrm{8}}+\sqrt{\mathrm{32}{x}−\mathrm{4}}+\sqrt[{\mathrm{4}}]{\mathrm{128}{x}+\mathrm{240}}= \\ $$$$=\sqrt[{\mathrm{3}}]{\mathrm{9}−\mathrm{8}}+\sqrt{\mathrm{4}−\mathrm{4}}+\sqrt[{\mathrm{4}}]{\mathrm{16}+\mathrm{240}}= \\ $$$$=\mathrm{1}+\mathrm{0}+\mathrm{4}=\mathrm{5} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{8}}\:{is}\:{a}\:{solution} \\ $$$$\Rightarrow{the}\:{only}\:{solution}\:{of}\:{f}\left({x}\right)=\frac{\mathrm{5}}{\mathrm{2}}\:{over}\:\mathbb{R} \\ $$$${is}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$
Commented by HongKing last updated on 25/Dec/21
$$\mathrm{cool}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$