Menu Close

Find-value-of-such-that-the-following-system-has-infinite-many-solutions-x-3z-3-2x-y-z-2-x-2y-z-1-




Question Number 42375 by Joel578 last updated on 24/Aug/18
Find value of  α such that the following system  has infinite many solutions    x − 3z = −3  −2x − αy + z = 2  x + 2y + αz = 1
Findvalueofαsuchthatthefollowingsystemhasinfinitemanysolutionsx3z=32xαy+z=2x+2y+αz=1
Commented by Joel578 last updated on 24/Aug/18
What is the idea to solve this problem?
Whatistheideatosolvethisproblem?
Commented by maxmathsup by imad last updated on 24/Aug/18
first we must have det A =0     (if detA≠0 weget a unique solution)  with A = (((1      0       −3)),((−2   −α     1)) )                          (1         2         α)  det A  =−α^2 −2 +2(6) −3α =−α^2  −3α +10   det A =0 ⇒α^2  +3α −10 =0  Δ =9 +40 =49 ⇒α_1 =  ((−3 +7)/2) =2    and  α_2 = ((−3−7)/2) =−5  for α =2  we get the system    { ((x−3z =−3)),((−2x−2y+z  =2)) :}    ⇒                                                                        {x+2y +2z =1   { ((x−3z =−3)),((−x+3z =3        and    x+2y +2z =1 ⇒ { ((x−3z =−3)),((2y =1−x−2z)) :})) :}  ⇒  { ((x =3z−3)),((y=(1/2){1−3z +3−2z}=(1/2){2−5z}   ⇒)) :}  (x,y,z) =(3z−3,1−(5/2)z ,z)    infinite solution  for α =−5   we follow the same method ....
firstwemusthavedetA=0(ifdetA0wegetauniquesolution)withA=(1032α1)(12α)detA=α22+2(6)3α=α23α+10detA=0α2+3α10=0Δ=9+40=49α1=3+72=2andα2=372=5forα=2wegetthesystem{x3z=32x2y+z=2{x+2y+2z=1{x3z=3x+3z=3andx+2y+2z=1{x3z=32y=1x2z{x=3z3y=12{13z+32z}=12{25z}(x,y,z)=(3z3,152z,z)infinitesolutionforα=5wefollowthesamemethod.
Commented by Joel578 last updated on 25/Aug/18
thank you very much
thankyouverymuch
Commented by math khazana by abdo last updated on 26/Aug/18
you are welcome.
youarewelcome.
Commented by Joel578 last updated on 27/Aug/18
Sir, if α = −5, the system will have no solution
Sir,ifα=5,thesystemwillhavenosolution
Answered by behi83417@gmail.com last updated on 24/Aug/18
      1x+0y−3z=−3  −2x−αy+1z=2       1x+2y+αz=1  ▲=1× determinant (((−α    1)),((2          α)))−0× determinant (((−2   1)),((1         α)))−3× determinant (((−2  −α)),((1            2)))≠0  ⇒−α^2 −2−3(−4+α)≠0  ⇒α^2 +3α−10≠0  ⇒α≠((−3±(√(9+40)))/2)≠((−3±7)/2)≠2,−5.■
1x+0y3z=32xαy+1z=21x+2y+αz=1=1×|α12α|0×|211α|3×|2α12|0α223(4+α)0α2+3α100α3±9+4023±722,5.◼
Commented by maxmathsup by imad last updated on 24/Aug/18
sir behi  if det M ≠ 0  the system have one solution  ...
sirbehiifdetM0thesystemhaveonesolution
Commented by behi83417@gmail.com last updated on 24/Aug/18
yes sir.  when ▲=0⇒ i.e:α=2 or −5,the  system have many solutions.
yessir.when=0i.e:α=2or5,thesystemhavemanysolutions.
Commented by Joel578 last updated on 25/Aug/18
thank you very much
thankyouverymuch
Commented by Joel578 last updated on 27/Aug/18
If α = −5, the system will have no solution  Pls check
Ifα=5,thesystemwillhavenosolutionPlscheck
Commented by Joel578 last updated on 27/Aug/18
 ((1,0,(−3),(−3)),((−2),5,1,2),(1,2,(−5),1) )  R_2  + 2R_1  → R_2  ((1,0,(−3),(−3)),(0,5,(−5),(−4)),(1,2,(−5),1) )  R_3  − R_1  → R_3    ((1,0,(−3),(−3)),(0,5,(−5),(−4)),(0,2,(−2),4) )  R_2   ↔ R_3                ((1,0,(−3),(−3)),(0,2,(−2),4),(0,5,(−5),(−4)) )  (1/2)R_2   ↔ R_2          ((1,0,(−3),(−3)),(0,1,(−1),2),(0,5,(−5),(−4)) )  R_3  − 5R_2  → R_3  ((1,0,(−3),(−3)),(0,1,(−1),2),(0,0,0,(−14)) )
(103325121251)R2+2R1R2(103305541251)R3R1R3(103305540224)R2R3(103302240554)12R2R2(103301120554)R35R2R3(1033011200014)

Leave a Reply

Your email address will not be published. Required fields are marked *