Menu Close

find-value-of-tan46-0-using-calculus-




Question Number 118004 by TANMAY PANACEA last updated on 14/Oct/20
find  value of tan46^0  using calculus
findvalueoftan460usingcalculus
Answered by mr W last updated on 14/Oct/20
46°=45°+1°=(π/4)+(π/(180))  tan 46°=((1+tan (π/(180)))/(1−tan (π/(180))))  ≈((1+(π/(180)))/(1−(π/(180))))=((180+π)/(180−π))=1.0355  or  y=tan x  ((Δy)/(Δx))≈(dy/dx)=(1/(cos^2  x))  Δy=tan 46°−tan 45°≈((Δx)/(cos^2  45°))  tan 46°≈tan 45°+(1/(cos^2  45°))×(π/(180))  ≈1+2×(π/(180))=1+(π/(90))=1.0349
46°=45°+1°=π4+π180tan46°=1+tanπ1801tanπ1801+π1801π180=180+π180π=1.0355ory=tanxΔyΔxdydx=1cos2xΔy=tan46°tan45°Δxcos245°tan46°tan45°+1cos245°×π1801+2×π180=1+π90=1.0349
Commented by TANMAY PANACEA last updated on 14/Oct/20
thank you sir
thankyousir
Commented by TANMAY PANACEA last updated on 14/Oct/20
sir encourage people to post logic based   and interesting question.  people are posting M.Sc level text book question
sirencouragepeopletopostlogicbasedandinterestingquestion.peoplearepostingM.Scleveltextbookquestion
Answered by TANMAY PANACEA last updated on 14/Oct/20
y=tanx  →(dy/dx)=sec^2 x  (dy/dx)≈((△y)/(△x))  here x=45^o =(π/4),  x+△x=46^o =(π/4)+(π/(180))=((46π)/(180))  now when x=(π/4)  y=tanx=1  when x+△x=((46π)/(180))   y+△y=?  here y=tanx=tan45^o =1  △y=(dy/dx)×△x=sec^2 x×△x  △y=sec^2 ((π/4))×(π/(180))=(π/(90))  y+△y=1+(π/(90))
y=tanxdydx=sec2xdydxyxherex=45o=π4,x+x=46o=π4+π180=46π180nowwhenx=π4y=tanx=1whenx+x=46π180y+y=?herey=tanx=tan45o=1y=dydx×x=sec2x×xy=sec2(π4)×π180=π90y+y=1+π90

Leave a Reply

Your email address will not be published. Required fields are marked *