Menu Close

Find-value-s-of-x-if-sin-2cos-1-cot-2tan-1-x-0-




Question Number 24294 by ajfour last updated on 15/Nov/17
Find value(s) of x if    sin [2cos^(−1) {cot (2tan^(−1) x)}]=0 .
$${Find}\:{value}\left({s}\right)\:{of}\:\boldsymbol{{x}}\:{if} \\ $$$$\:\:\mathrm{sin}\:\left[\mathrm{2cos}^{−\mathrm{1}} \left\{\mathrm{cot}\:\left(\mathrm{2tan}^{−\mathrm{1}} {x}\right)\right\}\right]=\mathrm{0}\:. \\ $$
Answered by mrW1 last updated on 15/Nov/17
 sin [2cos^(−1) {cot (2tan^(−1) x)}]=0    ⇒2cos^(−1) {cot (2tan^(−1) x)}=kπ    ⇒cos^(−1) {cot (2tan^(−1) x)}=((kπ)/2), k∈[0,2]   ⇒cot (2tan^(−1) x)=cos (((kπ)/2)), k∈[0,2]   ⇒cot (2tan^(−1) x)=±1, 0   ⇒2tan^(−1) x=kπ±(π/4), kπ+(π/2)   ⇒tan^(−1) x=−((3π)/8),−(π/4), −(π/8), (π/8),(π/4), ((3π)/8)  ⇒x=±tan ((π/8))=±((√2)−1)  ⇒x=±tan ((π/4))=±1  ⇒x=±tan (((3π)/8))=±((√2)+1)  i.e. there are 6 values for x.
$$\:\mathrm{sin}\:\left[\mathrm{2cos}^{−\mathrm{1}} \left\{\mathrm{cot}\:\left(\mathrm{2tan}^{−\mathrm{1}} {x}\right)\right\}\right]=\mathrm{0}\: \\ $$$$\:\Rightarrow\mathrm{2cos}^{−\mathrm{1}} \left\{\mathrm{cot}\:\left(\mathrm{2tan}^{−\mathrm{1}} {x}\right)\right\}={k}\pi\: \\ $$$$\:\Rightarrow\mathrm{cos}^{−\mathrm{1}} \left\{\mathrm{cot}\:\left(\mathrm{2tan}^{−\mathrm{1}} {x}\right)\right\}=\frac{{k}\pi}{\mathrm{2}},\:{k}\in\left[\mathrm{0},\mathrm{2}\right] \\ $$$$\:\Rightarrow\mathrm{cot}\:\left(\mathrm{2tan}^{−\mathrm{1}} {x}\right)=\mathrm{cos}\:\left(\frac{{k}\pi}{\mathrm{2}}\right),\:{k}\in\left[\mathrm{0},\mathrm{2}\right] \\ $$$$\:\Rightarrow\mathrm{cot}\:\left(\mathrm{2tan}^{−\mathrm{1}} {x}\right)=\pm\mathrm{1},\:\mathrm{0} \\ $$$$\:\Rightarrow\mathrm{2tan}^{−\mathrm{1}} {x}={k}\pi\pm\frac{\pi}{\mathrm{4}},\:{k}\pi+\frac{\pi}{\mathrm{2}} \\ $$$$\:\Rightarrow\mathrm{tan}^{−\mathrm{1}} {x}=−\frac{\mathrm{3}\pi}{\mathrm{8}},−\frac{\pi}{\mathrm{4}},\:−\frac{\pi}{\mathrm{8}},\:\frac{\pi}{\mathrm{8}},\frac{\pi}{\mathrm{4}},\:\frac{\mathrm{3}\pi}{\mathrm{8}} \\ $$$$\Rightarrow{x}=\pm\mathrm{tan}\:\left(\frac{\pi}{\mathrm{8}}\right)=\pm\left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$$\Rightarrow{x}=\pm\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}\right)=\pm\mathrm{1} \\ $$$$\Rightarrow{x}=\pm\mathrm{tan}\:\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)=\pm\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$$${i}.{e}.\:{there}\:{are}\:\mathrm{6}\:{values}\:{for}\:{x}. \\ $$
Commented by ajfour last updated on 15/Nov/17
yes sir, thank you.
$${yes}\:{sir},\:{thank}\:{you}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *