Menu Close

find-Vn-1-n-an-1-n-x-a-x-x-dx-




Question Number 53470 by maxmathsup by imad last updated on 22/Jan/19
find  Vn=∫_(1/n) ^((an−1)/n)  ((√x)/( (√(a−(√x)+x))))dx
findVn=1nan1nxax+xdx
Commented by maxmathsup by imad last updated on 24/Jan/19
changement (√x)=t give x=t^2  ⇒dx =2tdt and  V_n = ∫_(1/( (√n))) ^(√((an−1)/n))   (t/( (√(a−t+t^2 )))) (2t)dt =2 ∫_(1/( (√n))) ^(√((an−1)/n))    (t^2 /( (√(t^2 −2(1/2)t +(1/4)+a−(1/4)))))dt  =2 ∫_(1/( (√n))) ^(√((an−1)/n))   (t^2 /( (√((t−(1/2))^2  +((4a−1)/4)))))   let suppose a>(1/4) ⇒  V_n =_(t−(1/2)=((√(4a−1))/2)u)       2∫_(((2/( (√n)))−1)/( (√(4a−1)))) ^((2(√((an−1)/n))−1)/( (√(4a−1))))    (((((√(4a−1))/2)u+(1/2))^2 )/(((√(4a−1))/2)(√(1+u^2 )))) ((√(4a−1))/2) du  = 2 ∫_((2−(√n))/( (√n)(√(4a−1)))) ^((2((√(4a−1))−(√n))/( (√n)(√(4a−1))))    (1/4) (((4a−1)u^2  +2(√(4a−1))u +1)/( (√(1+u^2 )))) du  =(1/2) ∫_α_n  ^β_n     (((4a−1)u^2  +2(√(4a−1))u +1)/( (√(1+u^2 )))) du  =((4a−1)/2) ∫_α_n  ^β_n     ((u^2  +1 −1)/( (√(1+u^2 )))) + (√(4a−1))∫_α_n  ^β_n    (u/( (√(1+u^2 )))) du  +(1/2) ∫_α_n  ^β_n    (du/( (√(1+u^2 ))))  ∫_α_n  ^β_n    (du/( (√(1+u^2 )))) =[ln(1+(√(1+x^2 ]_α_n  ^β_n  ))=ln(1+(√(1+β_n ^2 )))−ln(1+(√(1+α_n ^2 )))  ∫_α_n  ^β_n     (u/( (√(1+u^2 )))) du =[(√(1+u^2 ))]_α_n  ^β_n   =(√(1+β_n ^2 ))−(√(1+α_n ^2 ))  ∫_α_n  ^β_n     ((u^2  +1−1)/( (√(1+u^2 )))) du =∫_α_n  ^β_n  (√(1+u^2 ))du −∫_α_n  ^β_n    (du/( (√(1+u^2 )))) =.....
changementx=tgivex=t2dx=2tdtandVn=1nan1ntat+t2(2t)dt=21nan1nt2t2212t+14+a14dt=21nan1nt2(t12)2+4a14letsupposea>14Vn=t12=4a12u22n14a12an1n14a1(4a12u+12)24a121+u24a12du=22nn4a12(4a1nn4a114(4a1)u2+24a1u+11+u2du=12αnβn(4a1)u2+24a1u+11+u2du=4a12αnβnu2+111+u2+4a1αnβnu1+u2du+12αnβndu1+u2αnβndu1+u2=[ln(1+1+x2]αnβn=ln(1+1+βn2)ln(1+1+αn2)αnβnu1+u2du=[1+u2]αnβn=1+βn21+αn2αnβnu2+111+u2du=αnβn1+u2duαnβndu1+u2=..

Leave a Reply

Your email address will not be published. Required fields are marked *