Menu Close

Find-without-any-software-x-5-x-1-5-x-2-sin-ln-x-5-x-dx-




Question Number 173500 by Shrinava last updated on 12/Jul/22
Find without any software:  Ω = ∫ (x + (5/x))(1 − (5/x^2 ))sin(ln(x + (5/x)))dx
Findwithoutanysoftware:Ω=(x+5x)(15x2)sin(ln(x+5x))dx
Answered by thfchristopher last updated on 12/Jul/22
Let u=x+(5/x)  du=(1−(5/x^2 ))dx  ∴ Ω=∫usin (ln u)du  =(1/2)∫sin (ln u)d(u^2 )  =(1/2)[u^2 sin (ln u)−∫u^2 d{sin (ln u)}]  =(1/2)u^2 sin (ln u)−(1/2)∫ucos (ln u)du  =(1/2)u^2 sin (ln u)−(1/4)∫cos (ln u)d(u^2 )  =(1/2)u^2 sin (ln u)−(1/4)[u^2 cos (ln u)−∫u^2 d{cos (ln u)}]  =(1/2)u^2 sin (ln u)−(1/4)u^2 cos (ln u)−(1/4)∫usin (ln u)du  ⇒(5/4)∫usin (ln u)du=(1/4)u^2 [2sin (ln u)−cos (ln u)]+C  ∫usin (ln u)du=(1/5)u^2 [2sin (ln u)−cos (ln u)]+C  ⇒∫(x+(5/x))(1−(5/x^2 ))sin [ln (x+(5/x))]dx  =(1/5)(x+(5/x))^2 [2sin {ln (x+(5/x))}−cos {ln (x+(5/x))}]+C
Letu=x+5xdu=(15x2)dxΩ=usin(lnu)du=12sin(lnu)d(u2)=12[u2sin(lnu)u2d{sin(lnu)}]=12u2sin(lnu)12ucos(lnu)du=12u2sin(lnu)14cos(lnu)d(u2)=12u2sin(lnu)14[u2cos(lnu)u2d{cos(lnu)}]=12u2sin(lnu)14u2cos(lnu)14usin(lnu)du54usin(lnu)du=14u2[2sin(lnu)cos(lnu)]+Cusin(lnu)du=15u2[2sin(lnu)cos(lnu)]+C(x+5x)(15x2)sin[ln(x+5x)]dx=15(x+5x)2[2sin{ln(x+5x)}cos{ln(x+5x)}]+C
Commented by Tawa11 last updated on 13/Jul/22
Great sir.
Greatsir.
Answered by a.lgnaoui last updated on 13/Jul/22
1−(5/x^2 )=(x+(5/x))′  and   (((x+(5/x))′)/(x+(5/x)))=ln(x+(5/x))′  ⌋Ω=∫(x+(5/x))^2 ×ln(x+(5/x))′sin (ln(x+(5/x)))dx  =∫(x+(5/x))^2 ×[−cos (ln(x+(5/x))]′dx  =let    U=(x+(5/x))^2     and  V=−cos (ln(x+(5/x)))  Ω=∫U×V′  =UV−∫U′V  [−(x+(5/x))^2 ×cos (ln(x+(5/x))) ]+∫[(x+(5/x))^2 ]′cos (ln(x+(5/x)))dx  (x+(5/x))^2 ′=2(x+(5/x))(1−(5/x^2 ))  posons  ∫U′cos (ln(x+(5/x)))=2∫(x+(5/x))(1−(5/x^2 ))cos (ln(x+(5/x)))dx    2∫(x+(5/x))^2 [sin( ln(x+(5/x)))]^′ dx  =−2I    or  I=[−cos(ln (x+(5/x)))(x+(5/x))^2 ]−2I  3I=−(x+(5/x))^2 cos (ln(x+(5/x)))⇒  I= −(([(x+(5/x))^2 cos (ln(x+(5/x)))])/3)
15x2=(x+5x)and(x+5x)x+5x=ln(x+5x)Ω=(x+5x)2×ln(x+5x)sin(ln(x+5x))dx=(x+5x)2×[cos(ln(x+5x)]dx=letU=(x+5x)2andV=cos(ln(x+5x))Ω=U×V=UVUV[(x+5x)2×cos(ln(x+5x))]+[(x+5x)2]cos(ln(x+5x))dxPrime causes double exponent: use braces to clarifyposonsUcos(ln(x+5x))=2(x+5x)(15x2)cos(ln(x+5x))dx2(x+5x)2[sin(ln(x+5x))]dx=2IorI=[cos(ln(x+5x))(x+5x)2]2I3I=(x+5x)2cos(ln(x+5x))I=[(x+5x)2cos(ln(x+5x))]3
Commented by Tawa11 last updated on 13/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *