Question Number 173500 by Shrinava last updated on 12/Jul/22

Answered by thfchristopher last updated on 12/Jul/22
![Let u=x+(5/x) du=(1−(5/x^2 ))dx ∴ Ω=∫usin (ln u)du =(1/2)∫sin (ln u)d(u^2 ) =(1/2)[u^2 sin (ln u)−∫u^2 d{sin (ln u)}] =(1/2)u^2 sin (ln u)−(1/2)∫ucos (ln u)du =(1/2)u^2 sin (ln u)−(1/4)∫cos (ln u)d(u^2 ) =(1/2)u^2 sin (ln u)−(1/4)[u^2 cos (ln u)−∫u^2 d{cos (ln u)}] =(1/2)u^2 sin (ln u)−(1/4)u^2 cos (ln u)−(1/4)∫usin (ln u)du ⇒(5/4)∫usin (ln u)du=(1/4)u^2 [2sin (ln u)−cos (ln u)]+C ∫usin (ln u)du=(1/5)u^2 [2sin (ln u)−cos (ln u)]+C ⇒∫(x+(5/x))(1−(5/x^2 ))sin [ln (x+(5/x))]dx =(1/5)(x+(5/x))^2 [2sin {ln (x+(5/x))}−cos {ln (x+(5/x))}]+C](https://www.tinkutara.com/question/Q173514.png)
Commented by Tawa11 last updated on 13/Jul/22

Answered by a.lgnaoui last updated on 13/Jul/22
![1−(5/x^2 )=(x+(5/x))′ and (((x+(5/x))′)/(x+(5/x)))=ln(x+(5/x))′ ⌋Ω=∫(x+(5/x))^2 ×ln(x+(5/x))′sin (ln(x+(5/x)))dx =∫(x+(5/x))^2 ×[−cos (ln(x+(5/x))]′dx =let U=(x+(5/x))^2 and V=−cos (ln(x+(5/x))) Ω=∫U×V′ =UV−∫U′V [−(x+(5/x))^2 ×cos (ln(x+(5/x))) ]+∫[(x+(5/x))^2 ]′cos (ln(x+(5/x)))dx (x+(5/x))^2 ′=2(x+(5/x))(1−(5/x^2 )) posons ∫U′cos (ln(x+(5/x)))=2∫(x+(5/x))(1−(5/x^2 ))cos (ln(x+(5/x)))dx 2∫(x+(5/x))^2 [sin( ln(x+(5/x)))]^′ dx =−2I or I=[−cos(ln (x+(5/x)))(x+(5/x))^2 ]−2I 3I=−(x+(5/x))^2 cos (ln(x+(5/x)))⇒ I= −(([(x+(5/x))^2 cos (ln(x+(5/x)))])/3)](https://www.tinkutara.com/question/Q173524.png)
Commented by Tawa11 last updated on 13/Jul/22
