Question Number 40620 by math khazana by abdo last updated on 25/Jul/18

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jul/18

Answered by MJS last updated on 25/Jul/18
![∫x^2 (√(x+1))dx=(2/7)(x^2 −((4x)/5)+(8/(15)))(x+1)^(3/2) [((t=x+1 → dx=dt)),((∫(t−1)^2 (√t)dt=∫(t^2 −2t+1)(√t)dt=∫(t^(5/2) −2t^(3/2) +t^(1/2) )dt)),((∫t^q dt=(1/(q+1))t^(q+1) )) ] ∫x(√(x^2 +1))dx=(1/3)(x^2 +1)^(3/2) [((t=x^2 +1 → dx=(dt/(2x)))),(((1/2)∫(√t)dt)),((∫t^q dt=(1/(q+1))t^(q+1) )) ] ∫(√(x^2 +1))dx=(1/2)(x(√(x^2 +1))+ln∣x+(√(x^2 +1))∣) [((t=arctan x → dx=sec^2 t dt)),((∫sec^2 t (√(1+tan^2 t))dt=∫sec^3 t dt)),((∫sec^n t dt=((sec^(n−2) t tan t)/(n−1))+((n−2)/(n−1))∫sec^(n−2) t dt)) ] ∫(√(x+1))dx=(2/3)(x+1)^(3/2) [∫(x+a)^q dx=(1/(q+1))(x+a)^(q+1) ]](https://www.tinkutara.com/question/Q40647.png)
Answered by maxmathsup by imad last updated on 25/Jul/18

Commented by maxmathsup by imad last updated on 25/Jul/18
