Menu Close

find-x-1-1-x-2-1-x-2-x-1-dx-




Question Number 40620 by math khazana by abdo last updated on 25/Jul/18
find  ∫   ((x+1)(√(1+x^2 )) +(1+x^2 )(√(x+1)))dx
find((x+1)1+x2+(1+x2)x+1)dx
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jul/18
∫x(√(1+x^2 )) dx+∫(√(x^2 +1)) dx+∫(√(x+1)) dx+∫x^2 (√(x+1))  I_1 =∫x(√(1+x^2 )) dx   =(1/2)∫(√(1+x^2 )) d(1+x^2 )  =(1/2)×(2/3)(1+x^2 )^(3/2)   I_2 =∫(√(x^2 +1)) dx use formula  =(x/2)(√(x^2 +1))  +(1/2)ln(x+(√(x^2 +1)) )  I_3 =∫(√(x+1)) dx  =(((x+1)^(3/2) )/(3/2))  I_4 =∫x^2 (√(x+1)) dx  let    t^2 =x+1    2tdt=dx  ∫(t^2 −1)^2 ×t×2tdt    2∫t^2 (t^4 −2t^2 +1)dt  2∫t^6 −2t^4 +t^2   dt  2((t^7 /7)−((2t^5 )/5)+(t^3 /3))  (2/7)(t^8 /8)−(4/5)×(t^6 /6)+(2/3)×(t^4 /4)  (/)
x1+x2dx+x2+1dx+x+1dx+x2x+1I1=x1+x2dx=121+x2d(1+x2)=12×23(1+x2)32I2=x2+1dxuseformula=x2x2+1+12ln(x+x2+1)I3=x+1dx=(x+1)3232I4=x2x+1dxlett2=x+12tdt=dx(t21)2×t×2tdt2t2(t42t2+1)dt2t62t4+t2dt2(t772t55+t33)27t8845×t66+23×t44
Answered by MJS last updated on 25/Jul/18
∫x^2 (√(x+1))dx=(2/7)(x^2 −((4x)/5)+(8/(15)))(x+1)^(3/2)         [((t=x+1 → dx=dt)),((∫(t−1)^2 (√t)dt=∫(t^2 −2t+1)(√t)dt=∫(t^(5/2) −2t^(3/2) +t^(1/2) )dt)),((∫t^q dt=(1/(q+1))t^(q+1) )) ]  ∫x(√(x^2 +1))dx=(1/3)(x^2 +1)^(3/2)         [((t=x^2 +1 → dx=(dt/(2x)))),(((1/2)∫(√t)dt)),((∫t^q dt=(1/(q+1))t^(q+1) )) ]  ∫(√(x^2 +1))dx=(1/2)(x(√(x^2 +1))+ln∣x+(√(x^2 +1))∣)        [((t=arctan x → dx=sec^2  t dt)),((∫sec^2  t (√(1+tan^2  t))dt=∫sec^3  t dt)),((∫sec^n  t dt=((sec^(n−2)  t tan t)/(n−1))+((n−2)/(n−1))∫sec^(n−2)  t dt)) ]  ∫(√(x+1))dx=(2/3)(x+1)^(3/2)        [∫(x+a)^q dx=(1/(q+1))(x+a)^(q+1) ]
x2x+1dx=27(x24x5+815)(x+1)32[t=x+1dx=dt(t1)2tdt=(t22t+1)tdt=(t522t32+t12)dttqdt=1q+1tq+1]xx2+1dx=13(x2+1)32[t=x2+1dx=dt2x12tdttqdt=1q+1tq+1]x2+1dx=12(xx2+1+lnx+x2+1)[t=arctanxdx=sec2tdtsec2t1+tan2tdt=sec3tdtsecntdt=secn2ttantn1+n2n1secn2tdt]x+1dx=23(x+1)32[(x+a)qdx=1q+1(x+a)q+1]
Answered by maxmathsup by imad last updated on 25/Jul/18
I = ∫ (x+1)(√(1+x^2 ))dx +∫(1+x^2 )(√(x+1))=K+H  K = ∫ (x+1)(√(1+x^2 ))dx=_(x=sh(t))   ∫  (sh(t)+1)ch(t)ch(t)dx  = ∫  (sh(t)+1)ch^2 t dt = ∫  sh(t)ch^2 (t)dt  +∫  ch^2 t dt  =(1/3)ch^3 (t) + ∫  ((1+ch(2t))/2)dt  =(1/3)ch^3 (t) +(t/2) +(1/4)sh(2t) =(1/3){((e^t +e^(−t) )/2)} +(t/2) +(1/2)ch(t)sh(t)  =(1/6){x+(√(1+x^2 )) + (x+(√(1+x^2 )))^(−1) }  +((ln(x+(√(1+x^2 ))))/2)+((x(√(1+x^2 )))/2) +c_1   H = ∫ (1+x^2 )(√(x+1))dx =_((√(x+1)) =t) ∫   (1+(t^2 −1)^2 )t (2tdt)  =2 ∫  t^2 (1+t^4 −2t^2 +1)dt  =2  ∫   t^2 (t^4  −2t^2  +2)dt  =2 ∫  (t^6   −2t^4  +2t^2 )dt =2{(t^7 /7) −(2/5)t^5  +(2/3)t^3 } +c_2   =(2/7)((√(x+1)))^7  −(4/5) ((√(x+1)))^(5 )  +(4/3) ((√(1+x)))^3  +c_2   I =K +H  the value of I is determined.
I=(x+1)1+x2dx+(1+x2)x+1=K+HK=(x+1)1+x2dx=x=sh(t)(sh(t)+1)ch(t)ch(t)dx=(sh(t)+1)ch2tdt=sh(t)ch2(t)dt+ch2tdt=13ch3(t)+1+ch(2t)2dt=13ch3(t)+t2+14sh(2t)=13{et+et2}+t2+12ch(t)sh(t)=16{x+1+x2+(x+1+x2)1}+ln(x+1+x2)2+x1+x22+c1H=(1+x2)x+1dx=x+1=t(1+(t21)2)t(2tdt)=2t2(1+t42t2+1)dt=2t2(t42t2+2)dt=2(t62t4+2t2)dt=2{t7725t5+23t3}+c2=27(x+1)745(x+1)5+43(1+x)3+c2I=K+HthevalueofIisdetermined.
Commented by maxmathsup by imad last updated on 25/Jul/18
error at line 5  K =(1/3)ch^3 (t) +(t/2)sh(2t)=(1/3){((e^t  +e^(−t) )/2)}^3  +(t/2) +(1/2)ch(t)sh(t)  =(1/(24)){ x+(√(1+x^2 ))+(x+(√(1+x^2 )))^(−1) }^3  +((ln(x+(√(1+x^2 ))))/2) +((x(√(1+x^2 )))/2) +c_1
erroratline5K=13ch3(t)+t2sh(2t)=13{et+et2}3+t2+12ch(t)sh(t)=124{x+1+x2+(x+1+x2)1}3+ln(x+1+x2)2+x1+x22+c1

Leave a Reply

Your email address will not be published. Required fields are marked *