Menu Close

Find-x-1-1-x-sin-1-x-




Question Number 58827 by jimful last updated on 30/Apr/19
Find  Σ_(x=1) ^∞ ((1/x)−sin((1/x)))
Findx=1(1xsin(1x))
Commented by tanmay last updated on 30/Apr/19
taking the help of graph we can find the value
takingthehelpofgraphwecanfindthevalue
Commented by jimful last updated on 01/May/19
thanks. I need to learn more
thanks.Ineedtolearnmore
Commented by maxmathsup by imad last updated on 30/Apr/19
we have sinx =Σ_(n=0) ^∞  (((−1)^n x^(2n+1) )/((2n+1)!)) =x−(x^3 /(3!)) +(x^5 /(5!)) −... ⇒  x−(x^3 /6) ≤ sinx ≤x ⇒ (1/x) −(1/(6x^3 )) ≤ sin((1/x))≤(1/x)   ⇒ −(1/x) ≤−sin((1/x))≤−(1/x) +(1/(6x^3 )) ⇒0≤ (1/x) −sin((1/x)) ≤ (1/(6x^3 )) ⇒  0≤ Σ_(x=1) ^∞  ((1/x) −sin((1/x))) ≤(1/6) Σ_(x=1) ^∞   (1/x^3 ) ⇒ 0≤ S ≤(1/6)ξ(3) ...
wehavesinx=n=0(1)nx2n+1(2n+1)!=xx33!+x55!xx36sinxx1x16x3sin(1x)1x1xsin(1x)1x+16x301xsin(1x)16x30x=1(1xsin(1x))16x=11x30S16ξ(3)
Answered by tanmay last updated on 30/Apr/19
f(x)=(1/x)               f(1)=1  g(x)=sin((1/x))      g(1)=sin(1)=0.841  f(1)−g(1)=1−0.841=0.159    f(2)=(1/2)=0.5  g(2)=sin((1/2))=0.479  f(2)−g(2)=0.5−0.479=0.021    △=f(x)−g(x)  thus we see as we increase the value of x   △→0  so Σ_(x=1) ^∞ (1/x)−sin((1/x))=0.159+0.021+ε  Σ_(x=1) ^∞  (1/x)−sin((1/x))=0.18+ε  ε=small positive number  i have tried to find ..it is not exact solution  but interpretation of the problem...
f(x)=1xf(1)=1g(x)=sin(1x)g(1)=sin(1)=0.841f(1)g(1)=10.841=0.159f(2)=12=0.5g(2)=sin(12)=0.479f(2)g(2)=0.50.479=0.021=f(x)g(x)thusweseeasweincreasethevalueofx0sox=11xsin(1x)=0.159+0.021+ϵx=11xsin(1x)=0.18+ϵϵ=smallpositivenumberihavetriedtofind..itisnotexactsolutionbutinterpretationoftheproblem

Leave a Reply

Your email address will not be published. Required fields are marked *