Menu Close

find-x-1-x-1-dx-




Question Number 47062 by maxmathsup by imad last updated on 04/Nov/18
find ∫   (√(((√x)−1)/( (√x)+1)))dx
findx1x+1dx
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18
t^2 =x   dx=2tdt  ∫(√((t−1)/(t+1))) ×2tdt  ∫((2t(t−1))/( (√(t^2 −1))))dt  ∫((2t^2 −2+2−2t)/( (√(t^2 −1))))dt  2∫(√(t^2 −1)) +2∫(dt/( (√(t^2 −1))))−∫((d(t^2 −1))/( (√(t^2 −1))))  2[(t/2)(√(t^2 −1)) −(1^2 /2)ln∣t+(√(t^2 −1)) ]+2ln∣t+(√(t^2 −1)) ∣−(((t^2 −1)^(1/2) )/(1/2))+c  =2[((√x)/2)(√(x−1)) −(1/2)ln∣(√x) +(√(x−1)) ∣]+2ln∣(√x) +(√(x−))1 ∣−(((x−1)^(1/2) )/(1/2))+c
t2=xdx=2tdtt1t+1×2tdt2t(t1)t21dt2t22+22tt21dt2t21+2dtt21d(t21)t212[t2t21122lnt+t21]+2lnt+t21(t21)1212+c=2[x2x112lnx+x1]+2lnx+x1(x1)1212+c
Commented by maxmathsup by imad last updated on 05/Nov/18
thank you sir Tanmay.
thankyousirTanmay.

Leave a Reply

Your email address will not be published. Required fields are marked *