Menu Close

find-x-1-x-1-x-1-x-1-dx-




Question Number 38720 by maxmathsup by imad last updated on 28/Jun/18
find   ∫     (((√(x+1)) −(√(x−1)))/( (√(x+1)) −(√(x−1))))dx
$${find}\:\:\:\int\:\:\:\:\:\frac{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{dx} \\ $$
Commented by math khazana by abdo last updated on 28/Jun/18
the Q is find  ∫    (((√(x+1)) −(√(x−1)))/( (√(x+1)) +(√(x−1))))dx
$${the}\:{Q}\:{is}\:{find}\:\:\int\:\:\:\:\frac{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}\:+\sqrt{{x}−\mathrm{1}}}{dx} \\ $$
Commented by prof Abdo imad last updated on 29/Jun/18
I= ∫   (({(√(x+1)) −(√(x−1))}^2 )/2)dx  = ∫    ((x+1 −2(√(x^2  −1))+x−1)/2)dx  =∫   xdx −∫   (√(x^2 −1))dx  =(x^2 /2) − ∫ (√(x^2 −1))dx but changement x=ch(t)  give ∫(√(x^2 −1))dx=∫  sht shtdt  =∫ sh^2 t dt =∫  ((ch(2t)−1)/2)dt  =(1/4)sh(2t) −(t/2) =(1/4)2sh(t)ch(t) −(t/2)  =(1/2)x(√(x^2 −1))   −(1/2)argch(x)  =(x/2)(√(x^2 −1))  −(1/2)ln(x +(√(x^2 −1))) ⇒  I = (x^2 /2)  −(x/2)(√(x^2 −1))  +(1/2)ln(x+(√(x^2 −1))) +c
$${I}=\:\int\:\:\:\frac{\left\{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}\right\}^{\mathrm{2}} }{\mathrm{2}}{dx} \\ $$$$=\:\int\:\:\:\:\frac{{x}+\mathrm{1}\:−\mathrm{2}\sqrt{{x}^{\mathrm{2}} \:−\mathrm{1}}+{x}−\mathrm{1}}{\mathrm{2}}{dx} \\ $$$$=\int\:\:\:{xdx}\:−\int\:\:\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}{dx} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:−\:\int\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}{dx}\:{but}\:{changement}\:{x}={ch}\left({t}\right) \\ $$$${give}\:\int\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}{dx}=\int\:\:{sht}\:{shtdt} \\ $$$$=\int\:{sh}^{\mathrm{2}} {t}\:{dt}\:=\int\:\:\frac{{ch}\left(\mathrm{2}{t}\right)−\mathrm{1}}{\mathrm{2}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}{sh}\left(\mathrm{2}{t}\right)\:−\frac{{t}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{2}{sh}\left({t}\right){ch}\left({t}\right)\:−\frac{{t}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}{argch}\left({x}\right) \\ $$$$=\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}\:+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\:\Rightarrow \\ $$$${I}\:=\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\:−\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)\:+{c} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *