Menu Close

find-x-1-x-1-x-dx-




Question Number 46740 by math khazana by abdo last updated on 30/Oct/18
find ∫  x(√((1−(√x))/(1+(√x))))dx
findx1x1+xdx
Commented by behi83417@gmail.com last updated on 31/Oct/18
=∫x.(√(((1−(√x))(1−(√x)))/((1+(√x))(1−(√x)))))dx=  =∫x.((1−(√x))/( (√(1−x))))dx=∫[(x/( (√(1−x))))−((x(√x))/( (√(1−x))))]dx=  [x=cos^2 t⇒dx=−2cost.sintdt]  =∫[((cos^2 t)/(sint))−((cos^3 t)/(sint))](−2cost.sint)dt=  =2∫(cos^4 t−cos^3 t)dt=  =2∫[(((1+cos2t)/2))^2 −((1/4)cos3t+(3/4)cost)]dt=  =(1/4)∫[3+4cos2t+cos4t−2cos3t+6cost]dt=  =(3/4)t+(1/2)sin2t+(1/(16))sin4t−(1/6)sin3t+(3/2)sint+C=  =(3/4)cos^(−1) (√x)+(√x).(√(1−x))+(1/4)(√x).(√(1−x))(2x−1)  −(1/6)[3(√(1−x))−4(1−x)(√(1−x))]+(3/2)(√(1−x))+C.  [sin4t=2sin2tcos2t=4sintcost.(2cos^2 t−1)=  =4(√x).(√(1−x)).(2x−1)  sin3t=3sint−4sin^3 t=3(√(1−x))−4(1−x)(√(1−x))
=x.(1x)(1x)(1+x)(1x)dx==x.1x1xdx=[x1xxx1x]dx=[x=cos2tdx=2cost.sintdt]=[cos2tsintcos3tsint](2cost.sint)dt==2(cos4tcos3t)dt==2[(1+cos2t2)2(14cos3t+34cost)]dt==14[3+4cos2t+cos4t2cos3t+6cost]dt==34t+12sin2t+116sin4t16sin3t+32sint+C==34cos1x+x.1x+14x.1x(2x1)16[31x4(1x)1x]+321x+C.[sin4t=2sin2tcos2t=4sintcost.(2cos2t1)==4x.1x.(2x1)sin3t=3sint4sin3t=31x4(1x)1x
Commented by maxmathsup by imad last updated on 31/Oct/18
we have x(√((1−(√x))/(1+(√x))))=x(√(((1−(√x))^2 )/(1−x)))=x((1−(√x))/( (√(1−x)))) =(x/( (√(1−x)))) −((x(√x))/( (√(1−x)))) ⇒  I = ∫  ((xdx)/( (√(1−x)))) −∫  ((x(√x))/( (√(1−x))))  changement x=sin^2 θ give  ∫  (x/( (√(1−x))))dx = ∫  ((sin^2 θ)/(cosθ)) 2sinθ cosθ = 2 ∫ sin^3 θ dθ but  sin^3 θ =(((e^(iθ )  −e^(−iθ) )/(2i)))^3  =−(1/(8i)) Σ_(k=0) ^3  C_3 ^k  e^(ikθ)  e^(−(3−k)iθ)   =(i/8)Σ_(k=0) ^3    C_3 ^k   (−1)^(3−k) e^(i(2k−3)θ)  =(1/8){− e^(−i3θ)   +3 e^(−iθ)  −3 e^(iθ)  + e^(i3θ) }  =(i/8){2isin(3θ) −6i sin(θ)} =−(1/4)sin(3θ) +(3/4)sin(θ) ⇒  ∫  (x/( (√(1−x))))dx =−(1/2) ∫ sin(3θ)dθ +(3/2) ∫ sinθ dθ +c_1   =(1/6) cos(3θ)−(3/2)cosθ +c_1     also the same changeent x=sin^2 θ give  ∫  ((x(√x))/( (√(1−x)))) dx = ∫  ((sin^2 θ sinθ)/(cosθ)) 2sinθ cosθ dθ = 2 ∫  sin^4 θ dθ  =2 ∫  (((1−cos(2θ))/2))^2 dθ =(1/2) ∫  (1−2cos(2θ) +((1+cos(4θ))/2))dθ  =(θ/2) −(1/2)sin(2θ) +(θ/4) +(1/8)sin(4θ) +c_2   =((3θ)/4) −((sin(2θ))/2) +((sin(4θ))/8) +c_2  ⇒  I =(1/6)cos(3θ)−(3/2) cosθ  +((3θ)/4) −((sin(2θ))/2) +((sin(4θ))/8) +C  =(1/6) cos(3 arcsin((√x)))−(3/2) cos(arcsin((√x)))+(3/4) arcsin((√x))−(1/2)sin(2arcsin(√x))  +(1/8) sin(4 arcsin(√x)) +C .
wehavex1x1+x=x(1x)21x=x1x1x=x1xxx1xI=xdx1xxx1xchangementx=sin2θgivex1xdx=sin2θcosθ2sinθcosθ=2sin3θdθbutsin3θ=(eiθeiθ2i)3=18ik=03C3keikθe(3k)iθ=i8k=03C3k(1)3kei(2k3)θ=18{ei3θ+3eiθ3eiθ+ei3θ}=i8{2isin(3θ)6isin(θ)}=14sin(3θ)+34sin(θ)x1xdx=12sin(3θ)dθ+32sinθdθ+c1=16cos(3θ)32cosθ+c1alsothesamechangeentx=sin2θgivexx1xdx=sin2θsinθcosθ2sinθcosθdθ=2sin4θdθ=2(1cos(2θ)2)2dθ=12(12cos(2θ)+1+cos(4θ)2)dθ=θ212sin(2θ)+θ4+18sin(4θ)+c2=3θ4sin(2θ)2+sin(4θ)8+c2I=16cos(3θ)32cosθ+3θ4sin(2θ)2+sin(4θ)8+C=16cos(3arcsin(x))32cos(arcsin(x))+34arcsin(x)12sin(2arcsinx)+18sin(4arcsinx)+C.
Answered by MJS last updated on 31/Oct/18
∫x(√((1−(√x))/(1+(√x))))dx=       [t=(√(1−(√x))) → dx=−4(√(x(1−(√x))))dt]  =4∫((t^2 (1−t^2 )^3 )/( (√(2−t^2 ))))dt=       [t=(√2)sin u → u=arcsin ((t(√2))/2); dt=du(√2)cos u]  =4∫(((√8)cos u sin^2  u (2sin^2  u −1)^3 )/( (√(2−2sin^2  u))))du=  =−8∫sin^2  u (1−2sin^2  u)^3 du=  =−8∫(−8sin^8  u +12sin^6  u −6sin^4  u +sin^2  u)du=  =(1/2)∫cos 8u du−∫cos 6u du+2∫cos 4u du−3∫cos 2u du+(3/2)∫du=  =(1/(16))sin 8u −(1/6)sin 6u +(1/2)sin 4u −(3/2)sin 2u +(3/2)u=  =...hard but possible, leads to...=  =(3/2)arcsin (√((1−(√x))/2)) +((1/2)x^(3/2) −(2/3)x+(3/4)x^(1/2) −(4/3))(√(1−x))+C
x1x1+xdx=[t=1xdx=4x(1x)dt]=4t2(1t2)32t2dt=[t=2sinuu=arcsint22;dt=du2cosu]=48cosusin2u(2sin2u1)322sin2udu==8sin2u(12sin2u)3du==8(8sin8u+12sin6u6sin4u+sin2u)du==12cos8uducos6udu+2cos4udu3cos2udu+32du==116sin8u16sin6u+12sin4u32sin2u+32u==hardbutpossible,leadsto==32arcsin1x2+(12x3223x+34x1243)1x+C
Commented by maxmathsup by imad last updated on 31/Oct/18
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *