Question Number 46740 by math khazana by abdo last updated on 30/Oct/18

Commented by behi83417@gmail.com last updated on 31/Oct/18
![=∫x.(√(((1−(√x))(1−(√x)))/((1+(√x))(1−(√x)))))dx= =∫x.((1−(√x))/( (√(1−x))))dx=∫[(x/( (√(1−x))))−((x(√x))/( (√(1−x))))]dx= [x=cos^2 t⇒dx=−2cost.sintdt] =∫[((cos^2 t)/(sint))−((cos^3 t)/(sint))](−2cost.sint)dt= =2∫(cos^4 t−cos^3 t)dt= =2∫[(((1+cos2t)/2))^2 −((1/4)cos3t+(3/4)cost)]dt= =(1/4)∫[3+4cos2t+cos4t−2cos3t+6cost]dt= =(3/4)t+(1/2)sin2t+(1/(16))sin4t−(1/6)sin3t+(3/2)sint+C= =(3/4)cos^(−1) (√x)+(√x).(√(1−x))+(1/4)(√x).(√(1−x))(2x−1) −(1/6)[3(√(1−x))−4(1−x)(√(1−x))]+(3/2)(√(1−x))+C. [sin4t=2sin2tcos2t=4sintcost.(2cos^2 t−1)= =4(√x).(√(1−x)).(2x−1) sin3t=3sint−4sin^3 t=3(√(1−x))−4(1−x)(√(1−x))](https://www.tinkutara.com/question/Q46772.png)
Commented by maxmathsup by imad last updated on 31/Oct/18

Answered by MJS last updated on 31/Oct/18
![∫x(√((1−(√x))/(1+(√x))))dx= [t=(√(1−(√x))) → dx=−4(√(x(1−(√x))))dt] =4∫((t^2 (1−t^2 )^3 )/( (√(2−t^2 ))))dt= [t=(√2)sin u → u=arcsin ((t(√2))/2); dt=du(√2)cos u] =4∫(((√8)cos u sin^2 u (2sin^2 u −1)^3 )/( (√(2−2sin^2 u))))du= =−8∫sin^2 u (1−2sin^2 u)^3 du= =−8∫(−8sin^8 u +12sin^6 u −6sin^4 u +sin^2 u)du= =(1/2)∫cos 8u du−∫cos 6u du+2∫cos 4u du−3∫cos 2u du+(3/2)∫du= =(1/(16))sin 8u −(1/6)sin 6u +(1/2)sin 4u −(3/2)sin 2u +(3/2)u= =...hard but possible, leads to...= =(3/2)arcsin (√((1−(√x))/2)) +((1/2)x^(3/2) −(2/3)x+(3/4)x^(1/2) −(4/3))(√(1−x))+C](https://www.tinkutara.com/question/Q46745.png)
Commented by maxmathsup by imad last updated on 31/Oct/18
