Menu Close

find-x-1-x-2-1-x-1-x-dx-




Question Number 82440 by mathmax by abdo last updated on 21/Feb/20
find ∫ ((x+1)/(x+2))(√((1−x)/(1+x)))dx
findx+1x+21x1+xdx
Commented by abdomathmax last updated on 24/Feb/20
let A =∫((x+1)/(x+2))(√((1−x)/(1+x)))dx  changement (√((1−x)/(1+x)))=t  hive  ((1−x)/(1+x))=t^2  ⇒1−x=t^2  +xt^2  ⇒1−t^2 =x(1+t^2 ) ⇒  x=((1−t^2 )/(1+t^2 )) ⇒dx =((−2t(1+t^2 )−(1−t^2 )2t)/((1+t^2 )^2 ))dt  =((−2t−2t^3 −2t+2t^3 )/((1+t^2 )^2 ))dt=((−4t)/((1+t^2 )^2 ))dt  x+1 =((1−t^2 )/(1+t^2 ))+1 =((1−t^2  +1+t^2 )/(1+t^2 )) =(2/(1+t^2 ))  x+2 =((1−t^2 )/(1+t^2 )) +2 =((1−t^2  +2+2t^2 )/(1+t^2 )) =((3+t^2 )/(1+t^2 ))  ⇒ I =∫ (2/(1+t^2 ))×((1+t^2 )/(3+t^2 ))×t ×((−4t)/((1+t^2 )^2 ))dt  =∫  ((−8t^2 )/((t^2  +3)(t^2  +1)^2 ))dt  let decpmpose  F(t)=((−8t^2 )/((t^2  +3)(t^2 +1)^2 )) ⇒  F(t) =((at+b)/(t^2  +3)) +((ct+d)/(t^2  +1)) +((dt +f)/((t^2  +1)^2 ))  ....be vontinued...
letA=x+1x+21x1+xdxchangement1x1+x=thive1x1+x=t21x=t2+xt21t2=x(1+t2)x=1t21+t2dx=2t(1+t2)(1t2)2t(1+t2)2dt=2t2t32t+2t3(1+t2)2dt=4t(1+t2)2dtx+1=1t21+t2+1=1t2+1+t21+t2=21+t2x+2=1t21+t2+2=1t2+2+2t21+t2=3+t21+t2I=21+t2×1+t23+t2×t×4t(1+t2)2dt=8t2(t2+3)(t2+1)2dtletdecpmposeF(t)=8t2(t2+3)(t2+1)2F(t)=at+bt2+3+ct+dt2+1+dt+f(t2+1)2.bevontinued

Leave a Reply

Your email address will not be published. Required fields are marked *