Question Number 82440 by mathmax by abdo last updated on 21/Feb/20
$${find}\:\int\:\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx} \\ $$
Commented by abdomathmax last updated on 24/Feb/20
$${let}\:{A}\:=\int\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{dx}\:\:{changement}\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}={t} \\ $$$${hive}\:\:\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}={t}^{\mathrm{2}} \:\Rightarrow\mathrm{1}−{x}={t}^{\mathrm{2}} \:+{xt}^{\mathrm{2}} \:\Rightarrow\mathrm{1}−{t}^{\mathrm{2}} ={x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${x}=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:\Rightarrow{dx}\:=\frac{−\mathrm{2}{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)−\left(\mathrm{1}−{t}^{\mathrm{2}} \right)\mathrm{2}{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\frac{−\mathrm{2}{t}−\mathrm{2}{t}^{\mathrm{3}} −\mathrm{2}{t}+\mathrm{2}{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}=\frac{−\mathrm{4}{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$${x}+\mathrm{1}\:=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{1}\:=\frac{\mathrm{1}−{t}^{\mathrm{2}} \:+\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${x}+\mathrm{2}\:=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:+\mathrm{2}\:=\frac{\mathrm{1}−{t}^{\mathrm{2}} \:+\mathrm{2}+\mathrm{2}{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:=\frac{\mathrm{3}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{I}\:=\int\:\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }×\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{3}+{t}^{\mathrm{2}} }×{t}\:×\frac{−\mathrm{4}{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\int\:\:\frac{−\mathrm{8}{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dt}\:\:{let}\:{decpmpose} \\ $$$${F}\left({t}\right)=\frac{−\mathrm{8}{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${F}\left({t}\right)\:=\frac{{at}+{b}}{{t}^{\mathrm{2}} \:+\mathrm{3}}\:+\frac{{ct}+{d}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{dt}\:+{f}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$….{be}\:{vontinued}… \\ $$