find-x-2-1-x-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 63822 by mathmax by abdo last updated on 09/Jul/19 find∫(x2+1)x+1x−2dx Commented by mathmax by abdo last updated on 11/Jul/19 letA=∫(x2+1)x+1x−2dxchangementx+1x−2=tgivex+1x−2=t2⇒x−2+3x−2=t2⇒1+3x−2=t2⇒3x−2=t2−1⇒x−23=1t2−1⇒x−2=3t2−1⇒dx=−6t(t2−1)2dt⇒A=∫{(3t2−1+2)2+1}t−6t(t2−1)2dt=∫−6t2(t2−1)2{(2t2+1t2−1)2+1}dt=∫−6t2(t2−1)2(2t2+1)2+(t2−1)2(t2−1)2dt=∫−6t2{4t4+4t2+1+t4−2t2+1}(t2−1)4dt=−6∫t2{5t4+2t2+2}(t2−1)4dt=−6∫5t6+2t4+2t2(t2−1)4dtletdecomposeF(t)=5t6+2t4+2t2(t2−1)4=(…)(t−1)4(t+1)4=∑i=14ai(t−1)i+∑i=14bi(t+1)ichangementt−1=ugiveF(t)=G(u)=5(u+1)6+2(u+1)4+2(u+1)2u4(u+2)4letfindD3(0)forf(u)=1(u+2)4=(u+2)−4⇒f(u)=f(0)+uf′(0)+u22f(2)(0)+u33!f(3)(0)+u33!ξ(u)f(0)=2−4,f′(u)=−4(u+2)−5⇒f′(0)=−4.2−5f(2)(u)=20(u+2)−6⇒f(2)(0)=20.2−6f(3)(u)=−120(u+2)−7⇒f(3)(0)=−120.2−7⇒f(u)=2−4−4.2−5u+10.2−6u2−20.2−7u3+u33!ξ(u)⇒G(u)=5(u+1)6+2(u+1)4+2(u+1)2u4{2−4−4.2−5u+10.2−6u2−20.2−7u3+u33!ξ(u)}…..becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-can-terminate-a-work-9-hour-earlier-than-B-A-and-B-terminate-that-work-after-20-hour-together-A-can-terminate-that-work-after-hour-Next Next post: solve-y-2x-1-y-x-2-3-xsin-2x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.