Menu Close

find-x-2-1-x-1-x-2-dx-




Question Number 63822 by mathmax by abdo last updated on 09/Jul/19
find ∫  (x^2 +1)(√((x+1)/(x−2)))dx
find(x2+1)x+1x2dx
Commented by mathmax by abdo last updated on 11/Jul/19
let A =∫ (x^2  +1)(√((x+1)/(x−2)))dx changement (√((x+1)/(x−2)))=t give  ((x+1)/(x−2)) =t^(2 )  ⇒((x−2 +3)/(x−2)) =t^2  ⇒1+(3/(x−2)) =t^2  ⇒(3/(x−2)) =t^2 −1 ⇒  ((x−2)/3) =(1/(t^2 −1)) ⇒x−2 =(3/(t^2 −1)) ⇒dx =((−6t)/((t^2 −1)^2 ))dt ⇒  A = ∫ {((3/(t^2 −1)) +2)^2  +1}t   ((−6t)/((t^2 −1)^2 ))dt  =∫   ((−6t^2 )/((t^2 −1)^2 )){  (((2t^2 +1)/(t^2 −1)))^(2 ) +1}dt  =∫  ((−6t^2 )/((t^2 −1)^2 ))(((2t^2  +1)^2  +(t^2 −1)^2 )/((t^2 −1)^2 ))dt  =∫  ((−6t^2 {  4t^4 +4t^2  +1+t^4 −2t^2  +1})/((t^2 −1)^4 ))dt  =−6 ∫   ((t^2 {5t^4  +2t^2  +2})/((t^2 −1)^4 )) dt =−6 ∫  ((5t^6  +2t^4  +2t^2 )/((t^2 −1)^4 ))dt  let decompose F(t)=((5t^6  +2t^4  +2t^2 )/((t^2 −1)^4 )) =(((...))/((t−1)^4 (t+1)^4 ))  =Σ_(i=1) ^4  (a_i /((t−1)^i )) +Σ_(i=1) ^4  (b_i /((t+1)^i )) changement t−1 =u give  F(t)=G(u) =((5(u+1)^6  +2(u+1)^4  +2(u+1)^2 )/(u^4 (u+2)^4 )) let find D_3 (0) for  f(u) =(1/((u+2)^4 )) =(u+2)^(−4)  ⇒f(u) =f(0)+uf^′ (0) +(u^2 /2)f^((2)) (0)  +(u^3 /(3!))f^((3)) (0) +(u^3 /(3!))ξ(u)  f(0) =2^(−4)     ,f^′ (u)=−4(u+2)^(−5)  ⇒f^′ (0) =−4.2^(−5)   f^((2)) (u) =20(u+2)^(−6)  ⇒f^((2)) (0) =20.2^(−6)   f^((3)) (u) =−120(u+2)^(−7)  ⇒f^((3)) (0) =−120 .2^(−7)  ⇒  f(u) =2^(−4)  −4.2^(−5) u +10. 2^(−6) u^2  −20. 2^(−7)  u^3   +(u^3 /(3!))ξ(u) ⇒  G(u) =((5(u+1)^6  +2(u+1)^4  +2(u+1)^2 )/u^4 ){2^(−4) −4.2^(−5) u +10.2^(−6) u^2   −20.2^(−7)  u^3  +(u^3 /(3!))ξ(u)}.....be continued....
letA=(x2+1)x+1x2dxchangementx+1x2=tgivex+1x2=t2x2+3x2=t21+3x2=t23x2=t21x23=1t21x2=3t21dx=6t(t21)2dtA={(3t21+2)2+1}t6t(t21)2dt=6t2(t21)2{(2t2+1t21)2+1}dt=6t2(t21)2(2t2+1)2+(t21)2(t21)2dt=6t2{4t4+4t2+1+t42t2+1}(t21)4dt=6t2{5t4+2t2+2}(t21)4dt=65t6+2t4+2t2(t21)4dtletdecomposeF(t)=5t6+2t4+2t2(t21)4=()(t1)4(t+1)4=i=14ai(t1)i+i=14bi(t+1)ichangementt1=ugiveF(t)=G(u)=5(u+1)6+2(u+1)4+2(u+1)2u4(u+2)4letfindD3(0)forf(u)=1(u+2)4=(u+2)4f(u)=f(0)+uf(0)+u22f(2)(0)+u33!f(3)(0)+u33!ξ(u)f(0)=24,f(u)=4(u+2)5f(0)=4.25f(2)(u)=20(u+2)6f(2)(0)=20.26f(3)(u)=120(u+2)7f(3)(0)=120.27f(u)=244.25u+10.26u220.27u3+u33!ξ(u)G(u)=5(u+1)6+2(u+1)4+2(u+1)2u4{244.25u+10.26u220.27u3+u33!ξ(u)}..becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *