Menu Close

find-x-2-2-findx-




Question Number 96241 by joki last updated on 30/May/20
find x^2 =2^×    findx?
findx2=2×findx?
Answered by 1549442205 last updated on 31/May/20
It is easy to see that x∈{0,1} don′t satisfy  and x∈{2,4} satisfying the given equation  We prove that 2^x >x^2  for any x ≥5  Indeed,consider the function f(x)=  2^x −x^2 .We have f ′ (x)=2^x ln2−2x,  f ′′(x)=2^x ln^2 2−2>32ln^2 2−2>0  Hence,f ′(x) is increasing function on  ]5;+∞)⇒f ′(x)>f ′(5)=32ln2−10>0  This show that  the function f(x)=2^x −x^2  is increasing  on [5;+∞)⇒f(x)>f(5)=2^5 −25>0  ⇒2^x −x^2 >0⇒2^x >x^2  for every x≥5.  Thus,the numbers x satisfy the given  equation are x∈{2;4}
Itiseasytoseethatx{0,1}dontsatisfyandx{2,4}satisfyingthegivenequationWeprovethat2x>x2foranyx5Indeed,considerthefunctionf(x)=2xx2.Wehavef(x)=2xln22x,f(x)=2xln222>32ln222>0Hence,f(x)isincreasingfunctionon]5;+)f(x)>f(5)=32ln210>0Thisshowthatthefunctionf(x)=2xx2isincreasingon[5;+)f(x)>f(5)=2525>02xx2>02x>x2foreveryx5.Thus,thenumbersxsatisfythegivenequationarex{2;4}
Answered by mr W last updated on 31/May/20
x^2 =2^x   ⇒x=±2^(x/2) =±e^((x/2)ln 2)   ⇒xe^(−(x/2)ln 2) =±1  ⇒(−(x/2)ln 2)e^(−(x/2)ln 2) =±((ln 2)/2)  ⇒−(x/2)ln 2=W(±((ln 2)/2))    with W()=Lambert W function  ⇒x=−((2/(ln 2)))W(±((ln 2)/2))= { ((−(2/(ln 2))W(((ln 2)/2))≈−(2/(ln 2))×0.26570574=−0.766665)),((−(2/(ln 2))W(−((ln 2)/2))= { ((−(2/(ln 2))×(−0.693147)=2)),((−(2/(ln 2))×(−1.386294)=4)) :})) :}  that means there are three roots.
x2=2xx=±2x2=±ex2ln2xex2ln2=±1(x2ln2)ex2ln2=±ln22x2ln2=W(±ln22)withW()=LambertWfunctionx=(2ln2)W(±ln22)={2ln2W(ln22)2ln2×0.26570574=0.7666652ln2W(ln22)={2ln2×(0.693147)=22ln2×(1.386294)=4thatmeanstherearethreeroots.
Commented by mr W last updated on 31/May/20
the curve of x^2 −2^x  shows that it has  indeed three roots:
thecurveofx22xshowsthatithasindeedthreeroots:
Commented by mr W last updated on 31/May/20

Leave a Reply

Your email address will not be published. Required fields are marked *