Question Number 98182 by abdomathmax last updated on 12/Jun/20

Answered by MJS last updated on 12/Jun/20
![∫x^2 (√((2−x)/(2+x)))dx= [t=(√((2+x)/(2−x))) → dx=(1/2)(√((2+x)(2−x)^3 ))dt] =32∫(((t^2 −1)^2 )/((t^2 +1)^4 ))dt= [Ostrogradski] =((8t(3t^4 +4t^2 +9))/(3(t^2 +1)^3 ))+8∫(dt/(t^2 +1))= =((8t(3t^4 +4t^2 +9))/(3(t^2 +1)^3 ))+8arctan t = =(1/3)(x^2 −3x+8)(√(4−x^2 ))+8arctan ((√(2+x))/( (√(2−x)))) = =(1/3)(x^2 −3x+8)(√(4−x^2 ))+8arcsin ((√(2+x))/2) +C](https://www.tinkutara.com/question/Q98212.png)
Commented by mathmax by abdo last updated on 12/Jun/20

Answered by 1549442205 last updated on 12/Jun/20
![Putting x=2cosϕ(ϕ∈[0;π])⇒dx=−2sinϕdϕ F=∫4cos^2 ϕ.tan(ϕ/2)(−2sinϕ)dϕ.Put tan(ϕ/2)=u ⇒du=(1/2)(1+u^2 )dϕ,sinϕ=((2u)/(1+u^2 )),cos ϕ=((1−u^2 )/(1+u^2 )) F=−8∫(((1−u^2 )/(1+u^2 )))^2 .u.((2u)/(1+u^2 )).((2du)/(1+u^2 ))=−32∫((u^2 (1−u^2 )^2 )/((1+u^2 )^4 ))du =−32∫((u^6 −2u^4 +u^2 )/((1+u^2 )^4 ))du=−32∫(((u^2 +1)^3 −5(u^2 +1)^2 +8(u^2 +1)−4)/((u^2 +1)^4 ))du =−32∫(du/(u^2 +1))+160∫(du/((u^2 +1)^2 ))−96∫(du/((u^2 +1)^3 ))+128∫(du/((u^2 +1)^4 ))=A+B+C+D Note that we have the following formula: I_n =∫(dt/((t^2 +a^2 )^n ))=(1/(2a^2 (n−1))).(t/((t^2 +a^2 )^(n−1) ))+(1/a^2 ).((2n−3)/(2n−2)).I_(n−1) Hence,B=160I_2 =160{(1/2).(u/(u^2 +1))+(1/2)∫(du/(u^2 +1))}=((80u)/(u^2 +1))+80arctan(u) C=−96I_3 =−96{(1/4).(u/((u^2 +1)^2 ))+(3/4)[(u/(2(u^2 +1)))+(1/2)arctan(u)]} =((−24u)/((u^2 +1)^2 ))−((36u)/(u^2 +1))−36arctan(u) D=128I_4 =128{(1/6).(u/((u^2 +1)^3 ))+(5/6)I_3 }=128{(u/(6(u^2 +1)^3 ))+(5/6)[(u/(4(u^2 +1)^2 ))+(((3u)/(8(u^2 +1)))+(3/8)arctan(u))]} =((64u)/(3(u^2 +1)^3 ))+((80u)/(3(u^2 +1)^2 ))+((80u)/(3(u^2 +1)))+((120)/3)arctan(u) Thus,F=−32arctan(u)+((80u)/(u^2 +1))+80arctan(u)−((24u)/((u^2 +1)^2 )) −((36u)/(u^2 +1))−36arctan(u)+((64u)/(3(u^2 +1)^3 ))+((80u)/(3(u^2 +1)^2 ))+((80u)/(3(u^2 +1)))+((120)/3)arctan(u) =((156)/3)arctan(u)+((224u)/(3(u^2 +1)))+((152u)/(3(u^2 +1)^2 ))+((64u)/(3(u^2 +1)^3 )) with u=tan(ϕ/2) and x=2cosϕ](https://www.tinkutara.com/question/Q98231.png)
Commented by mathmax by abdo last updated on 12/Jun/20
