Menu Close

find-x-2-2-x-2-x-dx-




Question Number 98182 by abdomathmax last updated on 12/Jun/20
find ∫ x^2 (√((2−x)/(2+x)))dx
findx22x2+xdx
Answered by MJS last updated on 12/Jun/20
∫x^2 (√((2−x)/(2+x)))dx=       [t=(√((2+x)/(2−x))) → dx=(1/2)(√((2+x)(2−x)^3 ))dt]  =32∫(((t^2 −1)^2 )/((t^2 +1)^4 ))dt=       [Ostrogradski]  =((8t(3t^4 +4t^2 +9))/(3(t^2 +1)^3 ))+8∫(dt/(t^2 +1))=  =((8t(3t^4 +4t^2 +9))/(3(t^2 +1)^3 ))+8arctan t =  =(1/3)(x^2 −3x+8)(√(4−x^2 ))+8arctan ((√(2+x))/( (√(2−x)))) =  =(1/3)(x^2 −3x+8)(√(4−x^2 ))+8arcsin ((√(2+x))/2) +C
x22x2+xdx=[t=2+x2xdx=12(2+x)(2x)3dt]=32(t21)2(t2+1)4dt=[Ostrogradski]=8t(3t4+4t2+9)3(t2+1)3+8dtt2+1==8t(3t4+4t2+9)3(t2+1)3+8arctant==13(x23x+8)4x2+8arctan2+x2x==13(x23x+8)4x2+8arcsin2+x2+C
Commented by mathmax by abdo last updated on 12/Jun/20
thank you sir.
thankyousir.
Answered by 1549442205 last updated on 12/Jun/20
Putting x=2cosϕ(ϕ∈[0;π])⇒dx=−2sinϕdϕ  F=∫4cos^2 ϕ.tan(ϕ/2)(−2sinϕ)dϕ.Put tan(ϕ/2)=u  ⇒du=(1/2)(1+u^2 )dϕ,sinϕ=((2u)/(1+u^2 )),cos ϕ=((1−u^2 )/(1+u^2 ))  F=−8∫(((1−u^2 )/(1+u^2 )))^2 .u.((2u)/(1+u^2 )).((2du)/(1+u^2 ))=−32∫((u^2 (1−u^2 )^2 )/((1+u^2 )^4 ))du  =−32∫((u^6 −2u^4 +u^2 )/((1+u^2 )^4 ))du=−32∫(((u^2 +1)^3 −5(u^2 +1)^2 +8(u^2 +1)−4)/((u^2 +1)^4 ))du  =−32∫(du/(u^2 +1))+160∫(du/((u^2 +1)^2 ))−96∫(du/((u^2 +1)^3 ))+128∫(du/((u^2 +1)^4 ))=A+B+C+D  Note that we have the following formula:   I_n =∫(dt/((t^2 +a^2 )^n ))=(1/(2a^2 (n−1))).(t/((t^2 +a^2 )^(n−1) ))+(1/a^2 ).((2n−3)/(2n−2)).I_(n−1)   Hence,B=160I_2 =160{(1/2).(u/(u^2 +1))+(1/2)∫(du/(u^2 +1))}=((80u)/(u^2 +1))+80arctan(u)  C=−96I_3 =−96{(1/4).(u/((u^2 +1)^2 ))+(3/4)[(u/(2(u^2 +1)))+(1/2)arctan(u)]}  =((−24u)/((u^2 +1)^2 ))−((36u)/(u^2 +1))−36arctan(u)  D=128I_4 =128{(1/6).(u/((u^2 +1)^3 ))+(5/6)I_3 }=128{(u/(6(u^2 +1)^3 ))+(5/6)[(u/(4(u^2 +1)^2 ))+(((3u)/(8(u^2 +1)))+(3/8)arctan(u))]}  =((64u)/(3(u^2 +1)^3 ))+((80u)/(3(u^2 +1)^2 ))+((80u)/(3(u^2 +1)))+((120)/3)arctan(u)  Thus,F=−32arctan(u)+((80u)/(u^2 +1))+80arctan(u)−((24u)/((u^2 +1)^2 ))  −((36u)/(u^2 +1))−36arctan(u)+((64u)/(3(u^2 +1)^3 ))+((80u)/(3(u^2 +1)^2 ))+((80u)/(3(u^2 +1)))+((120)/3)arctan(u)  =((156)/3)arctan(u)+((224u)/(3(u^2 +1)))+((152u)/(3(u^2 +1)^2 ))+((64u)/(3(u^2 +1)^3 )) with u=tan(ϕ/2) and x=2cosϕ
Puttingx=2cosφ(φ[0;π])dx=2sinφdφF=4cos2φ.tanφ2(2sinφ)dφ.Puttanφ2=udu=12(1+u2)dφ,sinφ=2u1+u2,cosφ=1u21+u2F=8(1u21+u2)2.u.2u1+u2.2du1+u2=32u2(1u2)2(1+u2)4du=32u62u4+u2(1+u2)4du=32(u2+1)35(u2+1)2+8(u2+1)4(u2+1)4du=32duu2+1+160du(u2+1)296du(u2+1)3+128du(u2+1)4=A+B+C+DNotethatwehavethefollowingformula:In=dt(t2+a2)n=12a2(n1).t(t2+a2)n1+1a2.2n32n2.In1Hence,B=160I2=160{12.uu2+1+12duu2+1}=80uu2+1+80arctan(u)C=96I3=96{14.u(u2+1)2+34[u2(u2+1)+12arctan(u)]}=24u(u2+1)236uu2+136arctan(u)D=128I4=128{16.u(u2+1)3+56I3}=128{u6(u2+1)3+56[u4(u2+1)2+(3u8(u2+1)+38arctan(u))]}=64u3(u2+1)3+80u3(u2+1)2+80u3(u2+1)+1203arctan(u)Thus,F=32arctan(u)+80uu2+1+80arctan(u)24u(u2+1)236uu2+136arctan(u)+64u3(u2+1)3+80u3(u2+1)2+80u3(u2+1)+1203arctan(u)=1563arctan(u)+224u3(u2+1)+152u3(u2+1)2+64u3(u2+1)3withu=tanφ2andx=2cosφ
Commented by mathmax by abdo last updated on 12/Jun/20
thankx sir.
thankxsir.

Leave a Reply

Your email address will not be published. Required fields are marked *