Question Number 153535 by gsk2684 last updated on 08/Sep/21
$${find}\:\int\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}^{\mathrm{3}} }\:{dx}=? \\ $$
Answered by puissant last updated on 08/Sep/21
$${K}=\int\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}^{\mathrm{3}} }{dx} \\ $$$${x}=\mathrm{3}{sec}\left({u}\right)\:\rightarrow\:{dx}=\mathrm{3}{sec}\left({u}\right){tan}\left({u}\right){du} \\ $$$${we}\:{have}\:{sec}\left({u}\right)=\frac{{x}}{\mathrm{3}}\:\Rightarrow\:{cos}\left({u}\right)=\frac{\mathrm{3}}{{x}} \\ $$$${and}\:{sin}\left({u}\right)=\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}} \\ $$$${K}=\int\frac{\sqrt{\mathrm{9}{sec}^{\mathrm{2}} {u}−\mathrm{9}}}{\mathrm{27}{sec}^{\mathrm{3}} {u}}×\mathrm{3}{sec}\left({u}\right){tan}\left({u}\right){du} \\ $$$$=\int\frac{\mathrm{3}{tan}\left({u}\right)}{\mathrm{27}{sec}^{\mathrm{2}} {u}}×\mathrm{3}{tan}\left({u}\right){du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int{tan}^{\mathrm{2}} {u}\:{cos}^{\mathrm{2}} {u}\:{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\int\mathrm{2}{sin}^{\mathrm{2}} {u}\:{du}\:=\:\frac{\mathrm{1}}{\mathrm{6}}\int\left(\mathrm{1}−{cos}\mathrm{2}{u}\right){du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left[{u}−\frac{{sin}\mathrm{2}{u}}{\mathrm{2}}\right]+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left[{u}−{sin}\left({u}\right){cos}\left({u}\right)\right]+{C} \\ $$$$\Rightarrow\:{K}=\frac{\mathrm{1}}{\mathrm{6}}\left[{arccos}\left(\frac{\mathrm{3}}{{x}}\right)−\frac{\mathrm{3}}{{x}}×\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}}\right]+{C} \\ $$$$ \\ $$$$\therefore\because\:\:{K}=\frac{\mathrm{1}}{\mathrm{6}}{arccos}\left(\frac{\mathrm{3}}{{x}}\right)−\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{\mathrm{2}{x}^{\mathrm{2}} }+{C} \\ $$
Commented by gsk2684 last updated on 13/Sep/21
$${thank}\:{you} \\ $$