Menu Close

find-x-2-9-x-3-dx-




Question Number 153535 by gsk2684 last updated on 08/Sep/21
find ∫((√(x^2 −9))/x^3 ) dx=?
findx29x3dx=?
Answered by puissant last updated on 08/Sep/21
K=∫((√(x^2 −9))/x^3 )dx  x=3sec(u) → dx=3sec(u)tan(u)du  we have sec(u)=(x/3) ⇒ cos(u)=(3/x)  and sin(u)=((√(x^2 −9))/x)  K=∫((√(9sec^2 u−9))/(27sec^3 u))×3sec(u)tan(u)du  =∫((3tan(u))/(27sec^2 u))×3tan(u)du  =(1/3)∫tan^2 u cos^2 u du  =(1/6)∫2sin^2 u du = (1/6)∫(1−cos2u)du  =(1/6)[u−((sin2u)/2)]+C  =(1/6)[u−sin(u)cos(u)]+C  ⇒ K=(1/6)[arccos((3/x))−(3/x)×((√(x^2 −9))/x)]+C    ∴∵  K=(1/6)arccos((3/x))−((√(x^2 −9))/(2x^2 ))+C
K=x29x3dxx=3sec(u)dx=3sec(u)tan(u)duwehavesec(u)=x3cos(u)=3xandsin(u)=x29xK=9sec2u927sec3u×3sec(u)tan(u)du=3tan(u)27sec2u×3tan(u)du=13tan2ucos2udu=162sin2udu=16(1cos2u)du=16[usin2u2]+C=16[usin(u)cos(u)]+CK=16[arccos(3x)3x×x29x]+C∴∵K=16arccos(3x)x292x2+C
Commented by gsk2684 last updated on 13/Sep/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *