find-x-2-9-x-3-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 153535 by gsk2684 last updated on 08/Sep/21 find∫x2−9x3dx=? Answered by puissant last updated on 08/Sep/21 K=∫x2−9x3dxx=3sec(u)→dx=3sec(u)tan(u)duwehavesec(u)=x3⇒cos(u)=3xandsin(u)=x2−9xK=∫9sec2u−927sec3u×3sec(u)tan(u)du=∫3tan(u)27sec2u×3tan(u)du=13∫tan2ucos2udu=16∫2sin2udu=16∫(1−cos2u)du=16[u−sin2u2]+C=16[u−sin(u)cos(u)]+C⇒K=16[arccos(3x)−3x×x2−9x]+C∴∵K=16arccos(3x)−x2−92x2+C Commented by gsk2684 last updated on 13/Sep/21 thankyou Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: vcalculate-0-arctan-2-x-3-x-2-9-dx-Next Next post: sin-sin-sin-x-2pix-1-cos-cos-cos-x-2ex-1-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.