Menu Close

find-x-2-ln-x-6-1-dx-




Question Number 35683 by prof Abdo imad last updated on 22/May/18
find ∫  x^2 ln(x^6 −1)dx
$${find}\:\int\:\:{x}^{\mathrm{2}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right){dx} \\ $$
Commented by prof Abdo imad last updated on 30/May/18
let put I = ∫ x^2 ln(x^6 −1)dx  I = ∫ x^2 ln{ (x^3 +1)(x^3 −1)}dx  = ∫ x^2 ln(x^3 +1)dx + ∫ x^2 ln(x^3  −1)dx= I_1  +I_2    by parts   I_1 = (x^3 /3)ln(x^3 +1) −∫   (x^3 /3) ((3x^2 )/(x^3  +1))dx  = (x^3 /3)ln(x^3 +1)  −∫  (x^5 /(x^3  +1))dx but  ∫   (x^5 /(x^3 +1))dx = ∫ ((x^2 (x^3 +1)−x^2 )/(x^3  +1))dx  =(x^3 /3) − ∫  (x^2 /(x^3 +1))dx let decompose  F(x)= (x^2 /(x^3  +1)) = (x^2 /((x+1)(x^2  −x+1)))   = (a/(x+1)) +((bx+c)/(x^2  −x +1))   ....be continued...
$${let}\:{put}\:{I}\:=\:\int\:{x}^{\mathrm{2}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right){dx} \\ $$$${I}\:=\:\int\:{x}^{\mathrm{2}} {ln}\left\{\:\left({x}^{\mathrm{3}} +\mathrm{1}\right)\left({x}^{\mathrm{3}} −\mathrm{1}\right)\right\}{dx} \\ $$$$=\:\int\:{x}^{\mathrm{2}} {ln}\left({x}^{\mathrm{3}} +\mathrm{1}\right){dx}\:+\:\int\:{x}^{\mathrm{2}} {ln}\left({x}^{\mathrm{3}} \:−\mathrm{1}\right){dx}=\:{I}_{\mathrm{1}} \:+{I}_{\mathrm{2}} \\ $$$$\:{by}\:{parts}\: \\ $$$${I}_{\mathrm{1}} =\:\frac{{x}^{\mathrm{3}} }{\mathrm{3}}{ln}\left({x}^{\mathrm{3}} +\mathrm{1}\right)\:−\int\:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:\frac{\mathrm{3}{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} \:+\mathrm{1}}{dx} \\ $$$$=\:\frac{{x}^{\mathrm{3}} }{\mathrm{3}}{ln}\left({x}^{\mathrm{3}} +\mathrm{1}\right)\:\:−\int\:\:\frac{{x}^{\mathrm{5}} }{{x}^{\mathrm{3}} \:+\mathrm{1}}{dx}\:{but} \\ $$$$\int\:\:\:\frac{{x}^{\mathrm{5}} }{{x}^{\mathrm{3}} +\mathrm{1}}{dx}\:=\:\int\:\frac{{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} +\mathrm{1}\right)−{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} \:+\mathrm{1}}{dx} \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:−\:\int\:\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} +\mathrm{1}}{dx}\:{let}\:{decompose} \\ $$$${F}\left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} \:+\mathrm{1}}\:=\:\frac{{x}^{\mathrm{2}} }{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:−{x}+\mathrm{1}\right)}\: \\ $$$$=\:\frac{{a}}{{x}+\mathrm{1}}\:+\frac{{bx}+{c}}{{x}^{\mathrm{2}} \:−{x}\:+\mathrm{1}}\:\:\:….{be}\:{continued}… \\ $$$$ \\ $$
Answered by sma3l2996 last updated on 31/May/18
A=∫x^2 ln(x^6 −1)dx  let t=x^3 ⇒dt=3x^2 dx  A=(1/3)∫ln(t^2 −1)dt  by parts  A=(1/3)×t×ln(t^2 −1)−(2/3)∫(t^2 /(t^2 −1))dt+c  =((x^3 ln(x^6 −1))/3)−(2/3)∫(1+(1/((t−1)(t+1))))dt+c  =((x^3 ln(x^6 −1))/3)−(2/3)x^3 −(1/3)∫((1/(t−1))−(1/(t+1)))dt+c_1   =((x^3 ln(x^6 −1))/3)−((2x^3 )/3)+(1/3)ln∣((t+1)/(t−1))∣+C  A=((x^3 ln(x^6 −1))/3)−((2x^3 )/3)+(1/3)ln∣((x^3 +1)/(x^3 −1))∣+C
$${A}=\int{x}^{\mathrm{2}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right){dx} \\ $$$${let}\:{t}={x}^{\mathrm{3}} \Rightarrow{dt}=\mathrm{3}{x}^{\mathrm{2}} {dx} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{3}}\int{ln}\left({t}^{\mathrm{2}} −\mathrm{1}\right){dt} \\ $$$${by}\:{parts} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{3}}×{t}×{ln}\left({t}^{\mathrm{2}} −\mathrm{1}\right)−\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} −\mathrm{1}}{dt}+{c} \\ $$$$=\frac{{x}^{\mathrm{3}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right)}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}\int\left(\mathrm{1}+\frac{\mathrm{1}}{\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)}\right){dt}+{c} \\ $$$$=\frac{{x}^{\mathrm{3}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right)}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{3}}\int\left(\frac{\mathrm{1}}{{t}−\mathrm{1}}−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right){dt}+{c}_{\mathrm{1}} \\ $$$$=\frac{{x}^{\mathrm{3}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right)}{\mathrm{3}}−\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid\frac{{t}+\mathrm{1}}{{t}−\mathrm{1}}\mid+{C} \\ $$$${A}=\frac{{x}^{\mathrm{3}} {ln}\left({x}^{\mathrm{6}} −\mathrm{1}\right)}{\mathrm{3}}−\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid\frac{{x}^{\mathrm{3}} +\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{1}}\mid+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *