find-x-2-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 47018 by maxmathsup by imad last updated on 03/Nov/18 find∫x+2−x−1dx Commented by maxmathsup by imad last updated on 04/Nov/18 letA=∫x+2−x−1dxchangementx−1=tgiveA=∫1+t2+2−t(2t)dt=2∫tt2−t+3dtbutt2−t+3=(t−12)2+3−14=(t−12)2+114⇒A=t−12=112u∫(12+112u)1121+u2112du=114∫(1+11u)1+u2du⇒411A=u=shα∫(1+11shα)chαchαdα=∫ch2αdα+11∫shαch2αdα=∫1+ch(2α)2dα+113ch3α+C=α2+14sh(α)+113ch3α+C=argsh(u)2+u4+113ch3(argsh(u))+C=12ln(u+1+u2)+u4+113ch3(ln(u+1+u2)+C=12ln(2t−111+1+(2t−111)2)+2t−1411+113ch3(ln(2t−111+1+(2t−111))+Cwitht=x−1. Answered by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18 x−1=t2dx=2tdt∫t2+1+2−t×2tdt∫(2t−1+1)t2−t+3dt∫t2−t+3d(t2−t+1)+∫t2−2×t×12+14+3−14dtI1+I2I1=(t2−t+1)3232+c1I1=(x−x−1)3232+c1I2=∫(t−12)2+(112)2dt=(t−12)2×(t−12)2+(112)2+(112)22ln{(t−12)+(t−12)2+(112)2+c2=(x−1−12)2×(x−1−12)2+(112)2+(112)22ln{(x−1−12)+(x−1−12)2+(112)2+c2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: un-avion-volant-a-hauteur-h-4km-du-sol-a-vitesse-supersonic-v-sachant-que-la-vitesse-du-son-a-la-hauteur-h-est-de-300m-s-et-que-le-temps-mis-par-le-son-emis-par-l-avion-depuis-un-point-c-est-csNext Next post: Question-47019 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.