Question Number 47018 by maxmathsup by imad last updated on 03/Nov/18
$${find}\:\int\:\sqrt{{x}+\mathrm{2}−\sqrt{{x}−\mathrm{1}}}{dx} \\ $$
Commented by maxmathsup by imad last updated on 04/Nov/18
$${let}\:{A}\:=\:\int\sqrt{{x}+\mathrm{2}−\sqrt{{x}−\mathrm{1}}}{dx}\:\:{changement}\:\sqrt{{x}−\mathrm{1}}={t}\:{give} \\ $$$${A}\:=\int\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{2}−{t}}\left(\mathrm{2}{t}\right){dt}\:=\mathrm{2}\:\int\:\:{t}\sqrt{{t}^{\mathrm{2}} −{t}+\mathrm{3}}{dt}\:{but}\: \\ $$$${t}^{\mathrm{2}} −{t}\:+\mathrm{3}\:=\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\mathrm{3}−\frac{\mathrm{1}}{\mathrm{4}}\:=\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{11}}{\mathrm{4}}\:\Rightarrow{A}=_{{t}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}{u}} \:\int\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}{u}\right)\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}{du} \\ $$$$=\frac{\mathrm{11}}{\mathrm{4}}\:\int\:\left(\mathrm{1}+\sqrt{\mathrm{11}}{u}\right)\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }{du}\:\Rightarrow\frac{\mathrm{4}}{\mathrm{11}}\:{A}\:=_{{u}\:={sh}\alpha} \:\int\:\:\left(\mathrm{1}+\sqrt{\mathrm{11}}{sh}\alpha\right){ch}\alpha{ch}\alpha\:{d}\alpha \\ $$$$=\int\:{ch}^{\mathrm{2}} \alpha\:{d}\alpha\:+\sqrt{\mathrm{11}}\int\:{sh}\alpha\:{ch}^{\mathrm{2}} \alpha\:{d}\alpha \\ $$$$=\int\:\:\frac{\mathrm{1}+{ch}\left(\mathrm{2}\alpha\right)}{\mathrm{2}}{d}\alpha\:+\frac{\sqrt{\mathrm{11}}}{\mathrm{3}}\:{ch}^{\mathrm{3}} \alpha\:+{C}\:=\frac{\alpha}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}{sh}\left(\alpha\right)\:+\frac{\sqrt{\mathrm{11}}}{\mathrm{3}}{ch}^{\mathrm{3}} \alpha\:+{C} \\ $$$$=\frac{{argsh}\left({u}\right)}{\mathrm{2}}\:+\frac{{u}}{\mathrm{4}}\:+\:\frac{\sqrt{\mathrm{11}}}{\mathrm{3}}\:{ch}^{\mathrm{3}} \left({argsh}\left({u}\right)\right)\:+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({u}+\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\right)\:+\frac{{u}}{\mathrm{4}}\:+\frac{\sqrt{\mathrm{11}}}{\mathrm{3}}\:{ch}^{\mathrm{3}} \left({ln}\left({u}+\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\right)\:+{C}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{11}}}\:+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{11}}}\right)^{\mathrm{2}} }\right)\:+\frac{\mathrm{2}{t}−\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{11}}}\:+\frac{\sqrt{\mathrm{11}}}{\mathrm{3}}{ch}^{\mathrm{3}} \left({ln}\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{11}}}\:+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{11}}}\right)}\right)\:+{C}\right. \\ $$$${with}\:{t}\:=\sqrt{{x}−\mathrm{1}}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18
$${x}−\mathrm{1}={t}^{\mathrm{2}} \\ $$$${dx}=\mathrm{2}{tdt} \\ $$$$\int\sqrt{{t}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}−{t}}\:\:×\mathrm{2}{tdt} \\ $$$$\int\left(\mathrm{2}{t}−\mathrm{1}+\mathrm{1}\right)\sqrt{{t}^{\mathrm{2}} −{t}+\mathrm{3}}\:\:{dt} \\ $$$$\int\sqrt{{t}^{\mathrm{2}} −{t}+\mathrm{3}}\:\:{d}\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)+\int\sqrt{{t}^{\mathrm{2}} −\mathrm{2}×{t}×\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{3}−\frac{\mathrm{1}}{\mathrm{4}}\:}\:{dt} \\ $$$${I}_{\mathrm{1}} +{I}_{\mathrm{2}} \\ $$$${I}_{\mathrm{1}} =\frac{\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}+{c}_{\mathrm{1}} \\ $$$${I}_{\mathrm{1}} =\frac{\left({x}−\sqrt{{x}−\mathrm{1}}\:\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}+{c}_{\mathrm{1}} \\ $$$${I}_{\mathrm{2}} =\int\sqrt{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)^{\mathrm{2}} }\:{dt} \\ $$$$=\frac{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}}×\sqrt{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)^{\mathrm{2}} }\:+\frac{\left(\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}}{ln}\left\{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\sqrt{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\:+{c}_{\mathrm{2}} \right. \\ $$$$=\frac{\left(\sqrt{{x}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}}×\sqrt{\left(\sqrt{{x}−\mathrm{1}}\:\:−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{11}}\:}{\mathrm{2}}\right)^{\mathrm{2}} }\:+\frac{\left(\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}}{ln}\left\{\left(\sqrt{{x}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)+\sqrt{\left(\sqrt{{x}−\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\right)^{\mathrm{2}} }\:+{c}_{\mathrm{2}} \right. \\ $$