Menu Close

find-x-2-x-3-dx-




Question Number 56700 by maxmathsup by imad last updated on 21/Mar/19
 find ∫ (√(x−2(√x)+3))dx
findx2x+3dx
Commented by kaivan.ahmadi last updated on 22/Mar/19
Commented by maxmathsup by imad last updated on 23/Mar/19
I =∫(√(((√x)−1)^2  +2))dx   changement (√x)−1=(√2)sh(t) give (√x)=1+(√2)sht ⇒  x =(1+(√2)sh(t))^2  ⇒  I =∫ (√(2sh^2 t +2))(2(1+(√2)sh(t))(√2)cht dt  =4 ∫ ch^2 (t)(1+(√2)sh(t)) dt =4 ∫ ch^2 t dt  +4(√2)∫  sh(t)ch^2 t dt  =4 ∫ ((1+ch(2t))/2)dt  +4(√2)(1/3)ch^3 (t) =2t +2 ∫ ch(2t)dt +((4(√2))/3) ch^3 (t)  =2t +sh(2t) +((4(√2))/3) ch^3 (t)  but t =argsh((((√x)−1)/2)) =ln((((√x)−1)/2) +(√(1+((((√x)−1)/2))^2 )))  I =2argsh((((√x)−1)/2)) +sh(2 argsh((((√x)−1)/2))) +((4(√2))/3) ch^3 (argsh((((√x)−1)/2))) +c
I=(x1)2+2dxchangementx1=2sh(t)givex=1+2shtx=(1+2sh(t))2I=2sh2t+2(2(1+2sh(t))2chtdt=4ch2(t)(1+2sh(t))dt=4ch2tdt+42sh(t)ch2tdt=41+ch(2t)2dt+4213ch3(t)=2t+2ch(2t)dt+423ch3(t)=2t+sh(2t)+423ch3(t)butt=argsh(x12)=ln(x12+1+(x12)2)I=2argsh(x12)+sh(2argsh(x12))+423ch3(argsh(x12))+c
Answered by kaivan.ahmadi last updated on 22/Mar/19
∫(√(((√x)−1)^2 +2))dx=  t=(√x)−1⇒dt=(dx/(2(√x)))=(dx/(2t+2))⇒dx=(2t+2)dt  ∫(√(t^2 +2))(2t+2)dt=∫2t(√(t^2 +2))dt+∫2(√(t^2 +2))dt=I+J  solve I  u=t^2 +2⇒du=2tdt  ∫(√u)du=(2/3)u^(3/2) +C_1 =(2/3)(t^2 +2)^(3/2) +C_1 =  (((√x)−1)^2 +2)^(3/2) +C_1   solve J  t=(√2)tgθ⇒dt=(√2)(1+tg^2 θ)dθ  and so tgθ=(t/( (√2)))⇒secθ=(√(1+(t^2 /2)))  ∫2(√(2(1+tg^2 θ))).(√2)(1+tg^2 θ)dθ=  ∫4(1+tg^2 θ)(√(1+tg^2 θ))dθ=∫4(dθ/(cos^3 θ))=  4∫sec^3 θdθ=4((1/2)secθtgθ+(1/2)(secθ+tgθ))+C_2 =  2secθtgθ+2(secθ+tgθ)+C_2 =  2(√(1+(t^2 /2))).(t/( (√2)))+2((√(1+(t^2 /2)))+(t/( (√2))))+C_2
(x1)2+2dx=t=x1dt=dx2x=dx2t+2dx=(2t+2)dtt2+2(2t+2)dt=2tt2+2dt+2t2+2dt=I+JsolveIu=t2+2du=2tdtudu=23u32+C1=23(t2+2)32+C1=((x1)2+2)32+C1solveJt=2tgθdt=2(1+tg2θ)dθandsotgθ=t2secθ=1+t2222(1+tg2θ).2(1+tg2θ)dθ=4(1+tg2θ)1+tg2θdθ=4dθcos3θ=4sec3θdθ=4(12secθtgθ+12(secθ+tgθ))+C2=2secθtgθ+2(secθ+tgθ)+C2=21+t22.t2+2(1+t22+t2)+C2

Leave a Reply

Your email address will not be published. Required fields are marked *