Menu Close

find-x-3-x-2-x-1-dx-




Question Number 35428 by abdo.msup.com last updated on 18/May/18
find     ∫    ((x+3)/( (√(x^2  +x −1))))dx
findx+3x2+x1dx
Commented by prof Abdo imad last updated on 19/May/18
let put  I  = ∫      ((x+3)/( (√(x^2  +x−1))))dx  I  = (1/2) ∫   ((2x+6)/( (√(x^2  +x−1))))dx  =(1/2)∫    ((2x+1)/( (√(x^2 +x−1))))dx   +(5/2) ∫     (dx/( (√(x^2 +x−1)))) but  ∫       ((2x+1)/(2(√(x^2  +x−1))))dx =(√(x^2 +x−1))   +λ  x^2  +x−1 = x^2  +2x(1/2) +(1/4) −1−(1/4)  =(x+(1/2))^2  −(5/4)  and cjsngement x+(1/2) =((√5)/2)cht  give  ∫     (dx/( (√(x^2  +x−1)))) = ((√5)/2)∫      ((sht dt)/( (√((5/4)(ch^2 t−1)))))  = ((√5)/2) .(2/( (√5)))  ∫    ((sht)/(sht))dt = t    +c  but 2x+1=(√5) cht⇒  cht  =((2x+1)/( (√5))) ⇒ t =argch(((2x+1)/( (√5))))  =ln( ((2x+1)/( (√5))) +(√({((2x+1)/( (√5)))}^2 −1)) ) ⇒  I  = (√(x^2  +x−1))   +(5/2)ln{ ((2x+1)/( (√5))) +(√((((2x+1)/( (√5))))^2  −1))) +λ
letputI=x+3x2+x1dxI=122x+6x2+x1dx=122x+1x2+x1dx+52dxx2+x1but2x+12x2+x1dx=x2+x1+λx2+x1=x2+2x12+14114=(x+12)254andcjsngementx+12=52chtgivedxx2+x1=52shtdt54(ch2t1)=52.25shtshtdt=t+cbut2x+1=5chtcht=2x+15t=argch(2x+15)=ln(2x+15+{2x+15}21)I=x2+x1+52ln{2x+15+(2x+15)21)+λ
Answered by ajfour last updated on 19/May/18
I=(1/2)∫((2x+1)/( (√(x^2 +x−1))))dx+(5/2)∫(dx/( (√((x+(1/2))^2 −(((√5)/2))^2 ))))  =(√(x^2 +x−1))+(5/2)ln ∣x+(1/2)+(√(x^2 +x−1))∣+c .
I=122x+1x2+x1dx+52dx(x+12)2(52)2=x2+x1+52lnx+12+x2+x1+c.

Leave a Reply

Your email address will not be published. Required fields are marked *