Menu Close

find-x-4-1-x-6-2-dx-2-calculate-0-1-x-8-1-x-6-2-dx-3-calculate-0-x-8-1-x-6-2-dx-




Question Number 62855 by mathmax by abdo last updated on 26/Jun/19
find ∫  ((x^4 /(1+x^6 )))^2  dx  2) calculate ∫_0 ^1    (x^8 /((1+x^6 )^2 ))dx  3) calculate ∫_0 ^(+∞)   (x^8 /((1+x^6 )^2 ))dx .
find(x41+x6)2dx2)calculate01x8(1+x6)2dx3)calculate0+x8(1+x6)2dx.
Commented by mathmax by abdo last updated on 27/Jun/19
1) let I =∫  (x^8 /((1+x^6 )^2 ))dx ⇒I =∫  (x^8 /((1+(x^3 )^2 )^2 ))dx changement x^3 =tanθ give  x =(tanθ)^(1/(3 ))  ⇒ I =∫   (((tanθ)^(8/3) )/((1+tan^2 θ)^2 )) (1/3)(1+tan^2 θ)(tanθ)^(−(2/3)) dθ  =(1/3) ∫    ((tan^2 θ)/(1+tan^2 θ)) dθ =(1/3) ∫  ((sin^2 θ)/(cos^2 θ)) cos^2 θ dθ =(1/3) ∫ sin^2 θ dθ =(1/3) ∫((1−cos(2θ))/2)dθ  =(θ/6) −(1/(12)) sin(2θ) +c   but θ =arctan(x^3 )  sin(2θ) =2sinθ cosθ =2 sin(arctan(x^3 ))cos(arctan(x^3 ))  =2 (x^3 /( (√(1+x^6 )))) .(1/( (√(1+x^6 )))) =((2x^3 )/(1+x^6 )) ⇒ I =(1/6) arctan(x^3 )−(1/6)(x^3 /(1+x^6 )) +c  2) ∫_0 ^1    (x^8 /((1+x^6 )^2 ))dx =(1/6)[arctan(x^3 )−(x^3 /(1+x^6 ))]_0 ^1 =(1/6){(π/4) −(1/2)}  3) ∫_0 ^∞     (x^8 /((1+x^6 )^2 ))dx =(1/6)[ arctan(x^3 )−(x^3 /(1+x^6 ))]_0 ^(+∞)  =(1/6) (π/2) =(π/(12)) .  ×
1)letI=x8(1+x6)2dxI=x8(1+(x3)2)2dxchangementx3=tanθgivex=(tanθ)13I=(tanθ)83(1+tan2θ)213(1+tan2θ)(tanθ)23dθ=13tan2θ1+tan2θdθ=13sin2θcos2θcos2θdθ=13sin2θdθ=131cos(2θ)2dθ=θ6112sin(2θ)+cbutθ=arctan(x3)sin(2θ)=2sinθcosθ=2sin(arctan(x3))cos(arctan(x3))=2x31+x6.11+x6=2x31+x6I=16arctan(x3)16x31+x6+c2)01x8(1+x6)2dx=16[arctan(x3)x31+x6]01=16{π412}3)0x8(1+x6)2dx=16[arctan(x3)x31+x6]0+=16π2=π12.×

Leave a Reply

Your email address will not be published. Required fields are marked *