Question Number 62855 by mathmax by abdo last updated on 26/Jun/19
$${find}\:\int\:\:\left(\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{6}} }\right)^{\mathrm{2}} \:{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{8}} }{\left(\mathrm{1}+{x}^{\mathrm{6}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{x}^{\mathrm{8}} }{\left(\mathrm{1}+{x}^{\mathrm{6}} \right)^{\mathrm{2}} }{dx}\:. \\ $$
Commented by mathmax by abdo last updated on 27/Jun/19
$$\left.\mathrm{1}\right)\:{let}\:{I}\:=\int\:\:\frac{{x}^{\mathrm{8}} }{\left(\mathrm{1}+{x}^{\mathrm{6}} \right)^{\mathrm{2}} }{dx}\:\Rightarrow{I}\:=\int\:\:\frac{{x}^{\mathrm{8}} }{\left(\mathrm{1}+\left({x}^{\mathrm{3}} \right)^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:{changement}\:{x}^{\mathrm{3}} ={tan}\theta\:{give} \\ $$$${x}\:=\left({tan}\theta\right)^{\frac{\mathrm{1}}{\mathrm{3}\:}} \:\Rightarrow\:{I}\:=\int\:\:\:\frac{\left({tan}\theta\right)^{\frac{\mathrm{8}}{\mathrm{3}}} }{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)\left({tan}\theta\right)^{−\frac{\mathrm{2}}{\mathrm{3}}} {d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\:\int\:\:\:\:\frac{{ta}\overset{\mathrm{2}} {{n}}\theta}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\:{d}\theta\:=\frac{\mathrm{1}}{\mathrm{3}}\:\int\:\:\frac{{sin}^{\mathrm{2}} \theta}{{cos}^{\mathrm{2}} \theta}\:{cos}^{\mathrm{2}} \theta\:{d}\theta\:=\frac{\mathrm{1}}{\mathrm{3}}\:\int\:{sin}^{\mathrm{2}} \theta\:{d}\theta\:=\frac{\mathrm{1}}{\mathrm{3}}\:\int\frac{\mathrm{1}−{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}{d}\theta \\ $$$$=\frac{\theta}{\mathrm{6}}\:−\frac{\mathrm{1}}{\mathrm{12}}\:{sin}\left(\mathrm{2}\theta\right)\:+{c}\:\:\:{but}\:\theta\:={arctan}\left({x}^{\mathrm{3}} \right) \\ $$$${sin}\left(\mathrm{2}\theta\right)\:=\mathrm{2}{sin}\theta\:{cos}\theta\:=\mathrm{2}\:{sin}\left({arctan}\left({x}^{\mathrm{3}} \right)\right){cos}\left({arctan}\left({x}^{\mathrm{3}} \right)\right) \\ $$$$=\mathrm{2}\:\frac{{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}+{x}^{\mathrm{6}} }}\:.\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{6}} }}\:=\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{6}} }\:\Rightarrow\:{I}\:=\frac{\mathrm{1}}{\mathrm{6}}\:{arctan}\left({x}^{\mathrm{3}} \right)−\frac{\mathrm{1}}{\mathrm{6}}\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{6}} }\:+{c} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{8}} }{\left(\mathrm{1}+{x}^{\mathrm{6}} \right)^{\mathrm{2}} }{dx}\:=\frac{\mathrm{1}}{\mathrm{6}}\left[{arctan}\left({x}^{\mathrm{3}} \right)−\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{6}} }\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{6}}\left\{\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right\} \\ $$$$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{\mathrm{8}} }{\left(\mathrm{1}+{x}^{\mathrm{6}} \right)^{\mathrm{2}} }{dx}\:=\frac{\mathrm{1}}{\mathrm{6}}\left[\:{arctan}\left({x}^{\mathrm{3}} \right)−\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{6}} }\right]_{\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{1}}{\mathrm{6}}\:\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\mathrm{12}}\:. \\ $$$$× \\ $$